from katlas.imports import *
from fastbook import *
from functools import reduce
import seaborn as sns
from tqdm import tqdm
from sklearn.preprocessing import MinMaxScaler
Predict PSSMs
Based on trained models, predict PSSMs of previously uncharacterized kinases.
Setup
Load data
= Data.get_kinase_info().query('pseudo=="0"') # exclude pseudo kinase df
# Remove too long proteins as they can't fit into the model
= df[df.human_uniprot_sequence.str.len()<7000]
df = df[df.kinasecom_domain.str.len()<7000] df
Get protein embeddings
Uncheck below to get protein embeddings for the kinases
# Remove too long proteins as they can't fit into the model
# valid_uniprot = df[df.human_uniprot_sequence.str.len()<7000]
# valid_kd = df[df.kinasecom_domain.str.len()<7000]
# feat_esm = get_esm(valid_uniprot,'human_uniprot_sequence')
# feat_esm_kd = get_esm(valid_kd,'kinasecom_domain')
# feat_t5 = get_t5(valid_uniprot,'human_uniprot_sequence')
# feat_t5_kd = get_t5(valid_kd,'kinasecom_domain')
# feat_esm.index=valid_uniprot.kinase
# feat_t5.index = valid_uniprot.kinase
# feat_esm_kd.index = valid_kd.kinase
# feat_t5_kd.index= valid_kd.kinase
# feat_esm.astype(float).to_parquet('raw/esm_unknown.parquet')
# feat_esm_kd.astype(float).to_parquet('raw/esm_unknown_kd.parquet')
# feat_t5.astype(float).to_parquet('raw/t5_unknown.parquet')
# feat_t5_kd.astype(float).to_parquet('raw/t5_unknown_kd.parquet')
Or directly load
= pd.read_parquet('raw/esm_unknown.parquet')
feat_esm = pd.read_parquet('raw/esm_unknown_kd.parquet')
feat_esm_kd
= pd.read_parquet('raw/t5_unknown.parquet')
feat_t5 = pd.read_parquet('raw/t5_unknown_kd.parquet') feat_t5_kd
feat_esm.shape,feat_esm_kd.shape,feat_t5.shape,feat_t5_kd.shape
((508, 1280), (503, 1280), (508, 1024), (503, 1024))
# filter out pseudokinase
= feat_esm[feat_esm.index.isin(df.kinase)]
feat_esm = feat_esm_kd[feat_esm_kd.index.isin(df.kinase)]
feat_esm_kd
= feat_t5[feat_t5.index.isin(df.kinase)]
feat_t5 = feat_t5_kd[feat_t5_kd.index.isin(df.kinase)] feat_t5_kd
Prepare models
5 Fold x 3 models = 15 models
= ['cnn_esm_kd',
top 'cnn_t5_kd',
'cnn_t5',
# 'mlp_t5',
]
# will not use these data, just to get t5_col and esm_col
= pd.read_parquet('train_data/combine_t5.parquet').reset_index()
t5 = pd.read_parquet('train_data/combine_esm.parquet').reset_index()
esm
# feature column
= t5.columns[t5.columns.str.startswith('T5_')]
t5_col = esm.columns[esm.columns.str.startswith('esm_')]
esm_col
# target column
= t5.columns[~t5.columns.isin(t5_col)][1:] target_col
= len(esm_col)
num_esm = len(t5_col)
num_t5 = len(target_col) num_target
def cnn_esm():
return CNN1D_2(num_esm, num_target)
def cnn_t5():
return CNN1D_2(num_t5, num_target)
def mlp_t5():
return MLP_1(num_t5, num_target)
def mlp_esm():
return MLP_1(num_esm, num_target)
= {
models 'cnn_esm_kd':(feat_esm_kd, esm_col, cnn_esm()),
'cnn_t5_kd': (feat_t5_kd, t5_col, cnn_t5()),
'cnn_t5':(feat_t5, t5_col, cnn_t5())
}
Predict through top models
predict_dl?
Signature: predict_dl(df, feat_col, target_col, model, model_pth) Docstring: Predict dataframe given a deep learning model File: /usr/local/lib/python3.9/dist-packages/katlas/dl.py Type: function
=5 N_FOLD
= []
pred_list for model_name, (data,feat_col,model) in models.items():
for i in range(N_FOLD):
= predict_dl(data,feat_col,target_col,model, f'{model_name}_fold{i}')
pred pred_list.append(pred)
len(pred_list)
15
Aggregate results
# Add up everything
= reduce(lambda x, y: x.add(y, fill_value=0), pred_list) preds
def get_heatmap(df, # Stacked Dataframe with kinase as index, substrates as columns
# A specific kinase name in index
kinase, = (7.5,10)
figsize
):
"Plot PSSM of a single kinase from a df"
# get a single kinase matrix from the df
= get_one_kinase(df, kinase,drop_s=False).T
matrix
# reorder aa order
= [i for i in 'PGACSTVILMFYWHKRQNDEsty']
aa_order = matrix.reindex(index=aa_order)
matrix
=kinase,figsize=figsize) plot_heatmap(matrix,title
set(rc={"figure.dpi":300, 'savefig.dpi':300})
sns.'notebook')
sns.set_context("ticks") sns.set_style(
-3],'CK1A2') get_heatmap(preds.iloc[:,:
Post-process
# remove kinase with duplicated name
= preds[~preds.index.duplicated()] preds
= MinMaxScaler().fit_transform(preds.T).T preds_minmax
= []
data for k in preds_minmax.index:
= get_one_kinase(preds_minmax,k,drop_s=False).T
w = w/w.sum()
w = w.unstack().reset_index(name=k)
w2 'substrate'] = w2.position.astype(str)+w2.aa
w2[= w2.set_index('substrate')[k]
w3
data.append(w3)# break
= pd.concat(data,axis=1).T
preds_final
= preds_final[target_col] preds_final
= preds_final[~preds_final.index.isin(t5.kinase)] preds_final
preds_final.index
Index(['ADCK1', 'ADCK2', 'COQ8A', 'COQ8B', 'ADCK5', 'ACVRL1', 'ACVR1C',
'ALPK3', 'ALPK2', 'ARAF', 'CASK', 'CDK20', 'CDKL2', 'CDKL3', 'CDKL4',
'STK35', 'PDIK1L', 'DCLK3', 'DDR1', 'CDC42BPG', 'STK17B', 'ERBB2',
'MAPK6', 'MAPK4', 'STK36', 'TNNI3K', 'AATK', 'LMTK2', 'LMTK3', 'LRRK1',
'MAP3K13', 'MAP2K6', 'MAP3K4', 'MAST1', 'MAST2', 'MAST3', 'MAST4',
'AMHR2', 'PKMYT1', 'NEK10', 'NRK', 'PDHK3', 'CDK15', 'PIK3R4', 'CDK11B',
'PSKH1', 'RIOK1', 'RIOK2', 'RIOK3', 'RNASEL', 'ROR1', 'ROR2', 'SBK2',
'SBK3', 'ANKK1', 'RSKR', 'SPEG', 'TESK2', 'TIE1', 'KALRN', 'TRIO',
'TSSK3', 'TSSK4', 'WEE2', 'STK32A'],
dtype='object')
# preds_final.to_parquet('raw/predicted.parquet')
# or directly load
= pd.read_parquet('raw/predicted.parquet') preds_final
Select kinase families with high oof Pearson scores
= pd.read_csv('raw/oof_corr_family.csv').rename(columns={'kinase':'family_count','Pearson':'Pearson_family'})
family_score = pd.read_csv('raw/oof_corr_subfamily.csv').rename(columns={'kinase':'subfamily_count','Pearson':'Pearson_subfamily'}) subfamily_score
family_score
family | Pearson_family | family_count | |
---|---|---|---|
0 | ALK | 0.968724 | 2 |
1 | Abl | 0.959211 | 2 |
2 | Ack | 0.830424 | 2 |
3 | Akt | 0.974935 | 3 |
4 | Alpha | 0.198162 | 4 |
... | ... | ... | ... |
95 | VEGFR | 0.964378 | 3 |
96 | VRK | 0.651387 | 2 |
97 | WEE | -0.090115 | 1 |
98 | WNK | 0.618240 | 4 |
99 | YANK | 0.816684 | 2 |
100 rows × 3 columns
= pd.DataFrame(preds_final.index,columns=['kinase']).merge(df,'left') preds_info
= preds_info.merge(family_score,'left')
preds_info = preds_info.merge(subfamily_score,'left') preds_info
= preds_info[['kinase','ID_coral','uniprot','ID_HGNC',
preds_info 'group','family','subfamily',
'Pearson_family','family_count',
'Pearson_subfamily','subfamily_count'
]]
= pd.read_csv('raw/pred_kinase.csv') selected
= preds_info[preds_info.kinase.isin(selected.kinase)]
selected_df selected_df
kinase | ID_coral | uniprot | ID_HGNC | group | family | subfamily | Pearson_family | family_count | Pearson_subfamily | subfamily_count | |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | ACVRL1 | ALK1 | P37023 | ACVRL1 | TKL | STKR | STKR1 | 0.857840 | 9.0 | 0.908758 | 5.0 |
6 | ACVR1C | ALK7 | Q8NER5 | ACVR1C | TKL | STKR | STKR1 | 0.857840 | 9.0 | 0.908758 | 5.0 |
11 | CDK20 | CCRK | Q8IZL9 | CDK20 | CMGC | CDK | CDK | 0.923265 | 17.0 | NaN | NaN |
12 | CDKL2 | CDKL2 | Q92772 | CDKL2 | CMGC | CDKL | CDKL | 0.763117 | 2.0 | 0.763117 | 2.0 |
13 | CDKL3 | CDKL3 | Q8IVW4 | CDKL3 | CMGC | CDKL | CDKL | 0.763117 | 2.0 | 0.763117 | 2.0 |
14 | CDKL4 | CDKL4 | Q5MAI5 | CDKL4 | CMGC | CDKL | CDKL | 0.763117 | 2.0 | 0.763117 | 2.0 |
17 | DCLK3 | DCAMKL3 | Q9C098 | DCLK3 | CAMK | DCAMKL | DCAMKL | 0.901985 | 2.0 | 0.901985 | 2.0 |
19 | CDC42BPG | DMPK2 | Q6DT37 | CDC42BPG | AGC | DMPK | GEK | 0.954669 | 6.0 | 0.961369 | 3.0 |
20 | STK17B | DRAK2 | O94768 | STK17B | CAMK | DAPK | DAPK | 0.792083 | 4.0 | 0.792083 | 4.0 |
22 | MAPK6 | Erk3 | Q16659 | MAPK6 | CMGC | MAPK | ERK3 | 0.881876 | 12.0 | NaN | NaN |
23 | MAPK4 | Erk4 | P31152 | MAPK4 | CMGC | MAPK | ERK3 | 0.881876 | 12.0 | NaN | NaN |
25 | TNNI3K | HH498 | Q59H18 | TNNI3K | TKL | MLK | HH498 | 0.733784 | 7.0 | NaN | NaN |
30 | MAP3K13 | LZK | O43283 | MAP3K13 | TKL | MLK | LZK | 0.733784 | 7.0 | 0.497632 | 1.0 |
32 | MAP3K4 | MAP3K4 | Q9Y6R4 | MAP3K4 | STE | STE11 | STE11 | 0.749903 | 7.0 | 0.749903 | 7.0 |
37 | AMHR2 | MISR2 | Q16671 | AMHR2 | TKL | STKR | STKR2 | 0.857840 | 9.0 | 0.794193 | 4.0 |
39 | NEK10 | NEK10 | Q6ZWH5 | NEK10 | Other | NEK | NEK | 0.778235 | 10.0 | 0.778235 | 10.0 |
40 | NRK | NRK | Q7Z2Y5 | NRK | STE | STE20 | MSN | 0.863932 | 27.0 | 0.945743 | 3.0 |
41 | PDHK3 | PDHK3 | Q15120 | PDK3 | Atypical | PDHK | PDHK | 0.676690 | 3.0 | 0.676690 | 3.0 |
42 | CDK15 | PFTAIRE2 | Q96Q40 | CDK15 | CMGC | CDK | PFTAIRE | 0.923265 | 17.0 | 0.949171 | 1.0 |
44 | CDK11B | PITSLRE | P21127 | CDK11B | CMGC | CDK | CDK11 | 0.923265 | 17.0 | NaN | NaN |
52 | SBK2 | SgK069 | P0C263 | SBK2 | Other | NKF1 | NKF1 | 0.734262 | 1.0 | 0.734262 | 1.0 |
53 | SBK3 | SgK110 | P0C264 | SBK3 | Other | NKF1 | NKF1 | 0.734262 | 1.0 | 0.734262 | 1.0 |
54 | ANKK1 | SgK288 | Q8NFD2 | ANKK1 | TKL | RIPK | RIPK | 0.627125 | 4.0 | 0.627125 | 4.0 |
57 | TESK2 | TESK2 | Q96S53 | TESK2 | TKL | LISK | TESK | 0.576401 | 3.0 | 0.099881 | 1.0 |
61 | TSSK3 | TSSK3 | Q96PN8 | TSSK3 | CAMK | TSSK | TSSK | 0.847705 | 3.0 | 0.847705 | 3.0 |
62 | TSSK4 | TSSK4 | Q6SA08 | TSSK4 | CAMK | TSSK | TSSK | 0.847705 | 3.0 | 0.847705 | 3.0 |
64 | STK32A | YANK1 | Q8WU08 | STK32A | AGC | YANK | YANK | 0.816684 | 2.0 | 0.816684 | 2.0 |
# selected = preds_info[preds_info['Pearson_family']>=0.55]\
# .sort_values('Pearson_family',ascending=False)\
# .query('group!="TK"')
# # Remove MAP2K families, as it is potentially contaminated with MAPK families
# selected = selected[~selected.kinase.str.startswith('MAP2')]
len(selected)
29
To save PSSMs:
preds_final.index
Index(['ADCK1', 'ADCK2', 'COQ8A', 'COQ8B', 'ADCK5', 'ACVRL1', 'ACVR1C',
'ALPK3', 'ALPK2', 'ARAF', 'CASK', 'CDK20', 'CDKL2', 'CDKL3', 'CDKL4',
'STK35', 'PDIK1L', 'DCLK3', 'DDR1', 'CDC42BPG', 'STK17B', 'ERBB2',
'MAPK6', 'MAPK4', 'STK36', 'TNNI3K', 'AATK', 'LMTK2', 'LMTK3', 'LRRK1',
'MAP3K13', 'MAP2K6', 'MAP3K4', 'MAST1', 'MAST2', 'MAST3', 'MAST4',
'AMHR2', 'PKMYT1', 'NEK10', 'NRK', 'CDK15', 'PIK3R4', 'CDK11B', 'PSKH1',
'RIOK1', 'RIOK2', 'RIOK3', 'RNASEL', 'ROR1', 'ROR2', 'SBK2', 'SBK3',
'ANKK1', 'RSKR', 'SPEG', 'TESK2', 'TIE1', 'KALRN', 'TRIO', 'TSSK3',
'TSSK4', 'WEE2', 'STK32A'],
dtype='object')
= preds_final.loc[selected.kinase] selected_PSSM
# selected_PSSM.to_csv('source/Supplementary_table3_predicted_PSSM.csv')
preds_final
substrate | -5P | -5G | -5A | -5C | -5S | -5T | -5V | -5I | -5L | -5M | -5F | -5Y | -5W | -5H | -5K | -5R | -5Q | -5N | -5D | -5E | -5s | -5t | -5y | -4P | -4G | -4A | -4C | -4S | -4T | -4V | -4I | -4L | -4M | -4F | -4Y | -4W | -4H | -4K | -4R | -4Q | -4N | -4D | -4E | -4s | -4t | -4y | -3P | -3G | -3A | -3C | -3S | -3T | -3V | -3I | -3L | -3M | -3F | -3Y | -3W | -3H | -3K | -3R | -3Q | -3N | -3D | -3E | -3s | -3t | -3y | -2P | -2G | -2A | -2C | -2S | -2T | -2V | -2I | -2L | -2M | -2F | -2Y | -2W | -2H | -2K | -2R | -2Q | -2N | -2D | -2E | -2s | -2t | -2y | -1P | -1G | -1A | -1C | -1S | -1T | -1V | -1I | -1L | -1M | -1F | -1Y | -1W | -1H | -1K | -1R | -1Q | -1N | -1D | -1E | -1s | -1t | -1y | 1P | 1G | 1A | 1C | 1S | 1T | 1V | 1I | 1L | 1M | 1F | 1Y | 1W | 1H | 1K | 1R | 1Q | 1N | 1D | 1E | 1s | 1t | 1y | 2P | 2G | 2A | 2C | 2S | 2T | 2V | 2I | 2L | 2M | 2F | 2Y | 2W | 2H | 2K | 2R | 2Q | 2N | 2D | 2E | 2s | 2t | 2y | 3P | 3G | 3A | 3C | 3S | 3T | 3V | 3I | 3L | 3M | 3F | 3Y | 3W | 3H | 3K | 3R | 3Q | 3N | 3D | 3E | 3s | 3t | 3y | 4P | 4G | 4A | 4C | 4S | 4T | 4V | 4I | 4L | 4M | 4F | 4Y | 4W | 4H | 4K | 4R | 4Q | 4N | 4D | 4E | 4s | 4t | 4y | 0s | 0t | 0y |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADCK1 | 0.048353 | 0.044662 | 0.049684 | 0.047756 | 0.039644 | 0.038732 | 0.041271 | 0.037347 | 0.041508 | 0.038331 | 0.053608 | 0.049934 | 0.062422 | 0.053521 | 0.049245 | 0.060374 | 0.029276 | 0.031936 | 0.034305 | 0.029565 | 0.038343 | 0.035231 | 0.044951 | 0.044934 | 0.055889 | 0.053259 | 0.051039 | 0.040561 | 0.039071 | 0.029120 | 0.026485 | 0.032313 | 0.043253 | 0.043563 | 0.045449 | 0.055382 | 0.051374 | 0.051370 | 0.058486 | 0.042473 | 0.033350 | 0.037059 | 0.042023 | 0.037581 | 0.039726 | 0.046240 | 0.045317 | 0.043955 | 0.041623 | 0.038439 | 0.031459 | 0.036182 | 0.017883 | 0.025107 | 0.028089 | 0.039873 | 0.038124 | 0.047898 | 0.048998 | 0.048629 | 0.060935 | 0.169430 | 0.039727 | 0.039115 | 0.027784 | 0.027859 | 0.026473 | 0.025607 | 0.051496 | 0.052765 | 0.066532 | 0.069552 | 0.057155 | 0.035952 | 0.036574 | 0.029716 | 0.024590 | 0.024692 | 0.044897 | 0.037173 | 0.038102 | 0.036595 | 0.045834 | 0.042720 | 0.070292 | 0.053697 | 0.044977 | 0.034447 | 0.035987 | 0.033721 | 0.033731 | 0.050301 | 0.050042 | 0.068772 | 0.047273 | 0.037983 | 0.037060 | 0.039980 | 0.016494 | 0.016991 | 0.048666 | 0.050307 | 0.035136 | 0.047393 | 0.021929 | 0.049534 | 0.049586 | 0.067902 | 0.043523 | 0.063060 | 0.035749 | 0.029079 | 0.014841 | 0.017725 | 0.110975 | 0.037987 | 0.036425 | 0.031539 | 0.035683 | 0.029945 | 0.028544 | 0.049934 | 0.052586 | 0.064842 | 0.065427 | 0.068493 | 0.070078 | 0.055551 | 0.037420 | 0.034944 | 0.041709 | 0.127522 | 0.034614 | 0.011865 | 0.012881 | 0.019960 | 0.019043 | 0.033009 | 0.038021 | 0.037081 | 0.045470 | 0.044291 | 0.037363 | 0.037934 | 0.032741 | 0.023745 | 0.026896 | 0.036136 | 0.043042 | 0.064908 | 0.042939 | 0.073471 | 0.058376 | 0.082958 | 0.044870 | 0.047893 | 0.049456 | 0.037746 | 0.036087 | 0.036824 | 0.021754 | 0.048246 | 0.052635 | 0.044155 | 0.047448 | 0.037878 | 0.042588 | 0.030934 | 0.027071 | 0.034234 | 0.036288 | 0.040991 | 0.053992 | 0.051278 | 0.051650 | 0.056384 | 0.083639 | 0.037271 | 0.044311 | 0.040318 | 0.036551 | 0.032791 | 0.030228 | 0.039123 | 0.044532 | 0.046071 | 0.034738 | 0.039499 | 0.041556 | 0.039789 | 0.026431 | 0.034100 | 0.032969 | 0.039661 | 0.043047 | 0.048863 | 0.067794 | 0.052228 | 0.059207 | 0.054760 | 0.044493 | 0.039064 | 0.038197 | 0.039430 | 0.044199 | 0.045629 | 0.043743 | 0.592792 | 0.407208 | 0.000000 |
ADCK2 | 0.045721 | 0.039397 | 0.046075 | 0.048963 | 0.039347 | 0.039411 | 0.037317 | 0.039063 | 0.038259 | 0.038223 | 0.050568 | 0.046183 | 0.060257 | 0.053303 | 0.053477 | 0.059690 | 0.032951 | 0.037253 | 0.037623 | 0.035300 | 0.040233 | 0.038882 | 0.042505 | 0.038253 | 0.046895 | 0.046298 | 0.050421 | 0.040807 | 0.040307 | 0.026036 | 0.026761 | 0.031410 | 0.040487 | 0.041790 | 0.049121 | 0.067160 | 0.053791 | 0.054370 | 0.057504 | 0.040842 | 0.038828 | 0.038541 | 0.046431 | 0.037180 | 0.038448 | 0.048320 | 0.029899 | 0.032401 | 0.036139 | 0.042894 | 0.034648 | 0.035971 | 0.016074 | 0.024989 | 0.037466 | 0.050001 | 0.041506 | 0.051284 | 0.054756 | 0.047511 | 0.055568 | 0.170383 | 0.034518 | 0.033387 | 0.029179 | 0.024037 | 0.028684 | 0.028524 | 0.060181 | 0.037890 | 0.045830 | 0.057961 | 0.060794 | 0.037078 | 0.037156 | 0.029906 | 0.035417 | 0.040394 | 0.069018 | 0.050424 | 0.050308 | 0.056359 | 0.049178 | 0.036979 | 0.050035 | 0.047813 | 0.034787 | 0.024446 | 0.031328 | 0.033462 | 0.036423 | 0.047013 | 0.044032 | 0.054508 | 0.044736 | 0.038589 | 0.038306 | 0.039960 | 0.019210 | 0.015471 | 0.043412 | 0.050007 | 0.032492 | 0.046547 | 0.028663 | 0.048846 | 0.062203 | 0.079447 | 0.049108 | 0.061290 | 0.034761 | 0.033345 | 0.013798 | 0.020700 | 0.100570 | 0.072016 | 0.052588 | 0.035022 | 0.042979 | 0.032550 | 0.032083 | 0.033524 | 0.041327 | 0.041449 | 0.056695 | 0.059243 | 0.057737 | 0.045298 | 0.040674 | 0.053588 | 0.058783 | 0.066609 | 0.050871 | 0.016541 | 0.022681 | 0.025931 | 0.025844 | 0.035966 | 0.043190 | 0.031350 | 0.040698 | 0.040927 | 0.039169 | 0.039970 | 0.029137 | 0.024877 | 0.024263 | 0.038165 | 0.042098 | 0.061697 | 0.048007 | 0.071997 | 0.060763 | 0.092504 | 0.040901 | 0.046491 | 0.033582 | 0.031696 | 0.036643 | 0.036539 | 0.045335 | 0.044955 | 0.046267 | 0.038843 | 0.048163 | 0.041402 | 0.042168 | 0.028033 | 0.027368 | 0.029552 | 0.039374 | 0.043419 | 0.057464 | 0.053689 | 0.051217 | 0.066311 | 0.101883 | 0.038626 | 0.047659 | 0.030986 | 0.022662 | 0.028900 | 0.029022 | 0.042037 | 0.049299 | 0.041710 | 0.031999 | 0.042755 | 0.043463 | 0.042232 | 0.027886 | 0.036487 | 0.037486 | 0.038706 | 0.039611 | 0.049975 | 0.063763 | 0.052915 | 0.062923 | 0.064993 | 0.048762 | 0.040808 | 0.032854 | 0.029899 | 0.040699 | 0.041583 | 0.039191 | 0.550779 | 0.449222 | 0.000000 |
COQ8A | 0.047078 | 0.049584 | 0.046538 | 0.046978 | 0.038505 | 0.039265 | 0.038297 | 0.027514 | 0.025965 | 0.034214 | 0.046496 | 0.053125 | 0.061218 | 0.063530 | 0.050068 | 0.057296 | 0.030144 | 0.036608 | 0.041208 | 0.034382 | 0.040725 | 0.038488 | 0.052773 | 0.051598 | 0.054722 | 0.051946 | 0.053349 | 0.041256 | 0.040011 | 0.028248 | 0.022370 | 0.025431 | 0.038975 | 0.042358 | 0.047993 | 0.058613 | 0.053117 | 0.044062 | 0.050123 | 0.041462 | 0.035505 | 0.039927 | 0.042196 | 0.040626 | 0.042263 | 0.053851 | 0.047354 | 0.044989 | 0.042722 | 0.043670 | 0.036494 | 0.039349 | 0.019971 | 0.025216 | 0.025044 | 0.042077 | 0.042146 | 0.052869 | 0.057933 | 0.045585 | 0.046349 | 0.114434 | 0.041640 | 0.040620 | 0.037419 | 0.036016 | 0.028373 | 0.029125 | 0.060607 | 0.053200 | 0.076206 | 0.065363 | 0.053134 | 0.034243 | 0.035309 | 0.027042 | 0.027100 | 0.026685 | 0.040070 | 0.041957 | 0.044627 | 0.037925 | 0.047342 | 0.033303 | 0.061909 | 0.042819 | 0.042647 | 0.039713 | 0.036886 | 0.035117 | 0.037581 | 0.059822 | 0.046798 | 0.075342 | 0.045890 | 0.037855 | 0.035734 | 0.039024 | 0.015485 | 0.014795 | 0.051195 | 0.048579 | 0.034145 | 0.045877 | 0.022837 | 0.045838 | 0.046570 | 0.062046 | 0.037391 | 0.058346 | 0.035356 | 0.024353 | 0.018455 | 0.018843 | 0.139246 | 0.046620 | 0.029290 | 0.026538 | 0.029174 | 0.029126 | 0.030876 | 0.048084 | 0.055013 | 0.066582 | 0.067302 | 0.064741 | 0.074518 | 0.062068 | 0.035251 | 0.038081 | 0.038229 | 0.112505 | 0.026391 | 0.011765 | 0.018384 | 0.024527 | 0.025697 | 0.039235 | 0.034462 | 0.038124 | 0.039552 | 0.039801 | 0.034877 | 0.035696 | 0.030061 | 0.021655 | 0.026670 | 0.038152 | 0.040993 | 0.065945 | 0.040576 | 0.082912 | 0.063481 | 0.080361 | 0.041272 | 0.043819 | 0.047356 | 0.041445 | 0.042968 | 0.042554 | 0.027267 | 0.047743 | 0.054207 | 0.042449 | 0.043962 | 0.038254 | 0.039598 | 0.027100 | 0.024370 | 0.032305 | 0.036350 | 0.039941 | 0.054749 | 0.049598 | 0.049072 | 0.061979 | 0.091424 | 0.034625 | 0.039491 | 0.038573 | 0.036898 | 0.037693 | 0.037084 | 0.042537 | 0.040794 | 0.048981 | 0.034644 | 0.042590 | 0.041290 | 0.038335 | 0.021906 | 0.022611 | 0.024033 | 0.032745 | 0.038359 | 0.051069 | 0.071394 | 0.053739 | 0.060517 | 0.056973 | 0.045843 | 0.038744 | 0.041111 | 0.042403 | 0.050887 | 0.051535 | 0.049496 | 0.531098 | 0.468902 | 0.000000 |
COQ8B | 0.046490 | 0.047984 | 0.047754 | 0.047483 | 0.039761 | 0.038309 | 0.038994 | 0.028313 | 0.026969 | 0.035838 | 0.042184 | 0.050925 | 0.056083 | 0.059763 | 0.058692 | 0.067034 | 0.035713 | 0.038473 | 0.037042 | 0.033089 | 0.039843 | 0.037535 | 0.045730 | 0.051322 | 0.054295 | 0.053244 | 0.051641 | 0.041342 | 0.041967 | 0.029125 | 0.021728 | 0.025911 | 0.040115 | 0.038629 | 0.046331 | 0.054629 | 0.053792 | 0.050985 | 0.055641 | 0.042761 | 0.040816 | 0.036494 | 0.041124 | 0.036740 | 0.040735 | 0.050634 | 0.049042 | 0.048814 | 0.042762 | 0.043352 | 0.036251 | 0.038490 | 0.021945 | 0.025510 | 0.028467 | 0.042587 | 0.040218 | 0.053032 | 0.054805 | 0.047075 | 0.046827 | 0.114656 | 0.045907 | 0.040083 | 0.032092 | 0.036369 | 0.024304 | 0.026974 | 0.060437 | 0.060197 | 0.071454 | 0.059700 | 0.054718 | 0.034807 | 0.035518 | 0.032697 | 0.033934 | 0.035685 | 0.047181 | 0.039248 | 0.044588 | 0.038767 | 0.050232 | 0.038700 | 0.068320 | 0.041183 | 0.041750 | 0.023728 | 0.025068 | 0.031471 | 0.034198 | 0.056857 | 0.051250 | 0.067170 | 0.048648 | 0.041807 | 0.037135 | 0.038623 | 0.021044 | 0.016097 | 0.047293 | 0.047487 | 0.034862 | 0.050749 | 0.028458 | 0.049276 | 0.042625 | 0.061439 | 0.040653 | 0.058289 | 0.032244 | 0.027185 | 0.016145 | 0.017861 | 0.123662 | 0.046231 | 0.054320 | 0.043225 | 0.038327 | 0.030678 | 0.031225 | 0.046657 | 0.043060 | 0.056026 | 0.058741 | 0.052604 | 0.066302 | 0.053787 | 0.042357 | 0.047298 | 0.056374 | 0.094522 | 0.036503 | 0.008882 | 0.015888 | 0.021940 | 0.022703 | 0.032349 | 0.029345 | 0.034197 | 0.032630 | 0.038210 | 0.034895 | 0.035072 | 0.030126 | 0.023677 | 0.031024 | 0.040142 | 0.041913 | 0.070701 | 0.045380 | 0.071101 | 0.067837 | 0.097443 | 0.043714 | 0.038530 | 0.037926 | 0.041200 | 0.035452 | 0.036403 | 0.043080 | 0.041556 | 0.047100 | 0.040494 | 0.044526 | 0.039906 | 0.041232 | 0.029107 | 0.027733 | 0.036204 | 0.038227 | 0.043508 | 0.057160 | 0.051152 | 0.049759 | 0.061597 | 0.099651 | 0.036943 | 0.038938 | 0.035402 | 0.032446 | 0.032767 | 0.032437 | 0.042155 | 0.041628 | 0.047614 | 0.034308 | 0.043401 | 0.041791 | 0.039117 | 0.026839 | 0.029370 | 0.025726 | 0.033912 | 0.039222 | 0.050926 | 0.066690 | 0.053031 | 0.066319 | 0.065283 | 0.047686 | 0.037915 | 0.035601 | 0.037493 | 0.046414 | 0.044682 | 0.045031 | 0.536430 | 0.463570 | 0.000000 |
ADCK5 | 0.049543 | 0.047891 | 0.053344 | 0.047442 | 0.039538 | 0.039139 | 0.037515 | 0.030666 | 0.034010 | 0.034438 | 0.048031 | 0.047656 | 0.058163 | 0.057253 | 0.053287 | 0.060471 | 0.032071 | 0.034439 | 0.040639 | 0.036601 | 0.039099 | 0.036382 | 0.042382 | 0.046010 | 0.055103 | 0.051187 | 0.048136 | 0.040229 | 0.039656 | 0.026984 | 0.025265 | 0.029893 | 0.040407 | 0.040468 | 0.048090 | 0.060049 | 0.052049 | 0.046587 | 0.056406 | 0.040163 | 0.036351 | 0.042446 | 0.047558 | 0.037579 | 0.038367 | 0.051016 | 0.044579 | 0.041849 | 0.043394 | 0.040439 | 0.034076 | 0.037129 | 0.020297 | 0.029052 | 0.041045 | 0.045282 | 0.043976 | 0.054678 | 0.053243 | 0.049444 | 0.054603 | 0.134756 | 0.039868 | 0.034255 | 0.029839 | 0.030173 | 0.018328 | 0.019532 | 0.060163 | 0.056545 | 0.062542 | 0.064457 | 0.056482 | 0.034845 | 0.037462 | 0.032346 | 0.032776 | 0.029499 | 0.049168 | 0.035670 | 0.039854 | 0.036803 | 0.045590 | 0.041027 | 0.082523 | 0.049648 | 0.044459 | 0.029937 | 0.032879 | 0.031460 | 0.031788 | 0.042241 | 0.047725 | 0.070456 | 0.052987 | 0.044120 | 0.038745 | 0.038989 | 0.015254 | 0.011927 | 0.052403 | 0.050014 | 0.032129 | 0.047100 | 0.022718 | 0.048942 | 0.046519 | 0.058769 | 0.051422 | 0.066435 | 0.038945 | 0.036135 | 0.013666 | 0.014764 | 0.099837 | 0.045244 | 0.049914 | 0.037949 | 0.042928 | 0.029092 | 0.027040 | 0.041000 | 0.035742 | 0.057063 | 0.056079 | 0.054661 | 0.061901 | 0.043877 | 0.037606 | 0.036988 | 0.051406 | 0.169357 | 0.047310 | 0.009869 | 0.010754 | 0.014510 | 0.013932 | 0.025780 | 0.038718 | 0.032160 | 0.044575 | 0.038416 | 0.034899 | 0.037351 | 0.027102 | 0.018443 | 0.025340 | 0.031271 | 0.037153 | 0.059982 | 0.038112 | 0.062765 | 0.059484 | 0.095888 | 0.045951 | 0.041892 | 0.058679 | 0.054161 | 0.039517 | 0.042078 | 0.036063 | 0.048144 | 0.047688 | 0.042921 | 0.045241 | 0.038341 | 0.041129 | 0.033237 | 0.028478 | 0.038002 | 0.035906 | 0.040726 | 0.050294 | 0.049203 | 0.046171 | 0.055096 | 0.084852 | 0.038221 | 0.040089 | 0.041478 | 0.039187 | 0.038181 | 0.036559 | 0.040855 | 0.048178 | 0.046452 | 0.036643 | 0.039390 | 0.041241 | 0.039432 | 0.028720 | 0.033507 | 0.033618 | 0.036911 | 0.042227 | 0.047590 | 0.065330 | 0.048556 | 0.058778 | 0.057889 | 0.044317 | 0.036743 | 0.036225 | 0.038623 | 0.047162 | 0.046304 | 0.046163 | 0.589432 | 0.410568 | 0.000000 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
TRIO | 0.049070 | 0.047619 | 0.050919 | 0.036940 | 0.039468 | 0.036601 | 0.037051 | 0.039088 | 0.055922 | 0.033747 | 0.037797 | 0.037885 | 0.040365 | 0.047620 | 0.089619 | 0.104386 | 0.035882 | 0.035138 | 0.027533 | 0.026947 | 0.029696 | 0.027546 | 0.033160 | 0.040242 | 0.054292 | 0.049277 | 0.036617 | 0.038336 | 0.036097 | 0.032922 | 0.029114 | 0.039965 | 0.034677 | 0.033214 | 0.033950 | 0.051522 | 0.042696 | 0.086770 | 0.096365 | 0.040047 | 0.039212 | 0.031899 | 0.046810 | 0.039532 | 0.033757 | 0.032687 | 0.040588 | 0.046487 | 0.041025 | 0.035235 | 0.024366 | 0.022327 | 0.015677 | 0.015624 | 0.027098 | 0.021550 | 0.015253 | 0.022121 | 0.028663 | 0.042066 | 0.110473 | 0.274714 | 0.042374 | 0.026190 | 0.018635 | 0.025052 | 0.039983 | 0.032963 | 0.031535 | 0.039414 | 0.053819 | 0.059979 | 0.051875 | 0.030931 | 0.028657 | 0.028994 | 0.020251 | 0.031121 | 0.028722 | 0.026451 | 0.028520 | 0.038303 | 0.052640 | 0.077293 | 0.169409 | 0.053991 | 0.044506 | 0.015306 | 0.026811 | 0.034840 | 0.028631 | 0.029538 | 0.059929 | 0.060988 | 0.043823 | 0.031445 | 0.038540 | 0.034964 | 0.027002 | 0.015795 | 0.052652 | 0.040019 | 0.031302 | 0.043654 | 0.020271 | 0.052015 | 0.084335 | 0.077021 | 0.050008 | 0.065065 | 0.047315 | 0.034443 | 0.025273 | 0.022954 | 0.041188 | 0.027463 | 0.057164 | 0.036142 | 0.048622 | 0.023223 | 0.019486 | 0.040813 | 0.038318 | 0.045951 | 0.044914 | 0.083225 | 0.036573 | 0.037518 | 0.022715 | 0.029867 | 0.036701 | 0.049416 | 0.031456 | 0.036215 | 0.042563 | 0.091499 | 0.083831 | 0.036325 | 0.029434 | 0.029243 | 0.033266 | 0.036495 | 0.024849 | 0.025063 | 0.034100 | 0.032383 | 0.042886 | 0.029725 | 0.037479 | 0.043795 | 0.029674 | 0.048883 | 0.063765 | 0.093569 | 0.033577 | 0.039036 | 0.042169 | 0.039494 | 0.067533 | 0.063865 | 0.079716 | 0.041778 | 0.041596 | 0.034564 | 0.059608 | 0.031858 | 0.030933 | 0.041257 | 0.046932 | 0.060865 | 0.030918 | 0.042661 | 0.036810 | 0.046814 | 0.037225 | 0.052091 | 0.068956 | 0.031620 | 0.033985 | 0.035322 | 0.034865 | 0.050751 | 0.044158 | 0.064431 | 0.052995 | 0.050392 | 0.041937 | 0.034362 | 0.037274 | 0.033597 | 0.037413 | 0.031098 | 0.038037 | 0.026956 | 0.040720 | 0.037006 | 0.046596 | 0.044965 | 0.066581 | 0.067287 | 0.042255 | 0.039186 | 0.039640 | 0.042475 | 0.052884 | 0.046734 | 0.049610 | 0.477542 | 0.522458 | 0.000000 |
TSSK3 | 0.058653 | 0.025380 | 0.066570 | 0.056317 | 0.037207 | 0.036167 | 0.080225 | 0.075408 | 0.115814 | 0.049548 | 0.037163 | 0.036261 | 0.024276 | 0.026531 | 0.046915 | 0.083276 | 0.037862 | 0.020326 | 0.007830 | 0.007382 | 0.021717 | 0.022070 | 0.027101 | 0.027753 | 0.058953 | 0.062683 | 0.042829 | 0.038773 | 0.036912 | 0.039729 | 0.030383 | 0.037500 | 0.049506 | 0.021706 | 0.032364 | 0.026124 | 0.056058 | 0.116581 | 0.107571 | 0.041487 | 0.037895 | 0.022279 | 0.037350 | 0.029320 | 0.030523 | 0.015721 | 0.057714 | 0.044055 | 0.054457 | 0.034306 | 0.030038 | 0.031732 | 0.027433 | 0.024502 | 0.018529 | 0.024557 | 0.014175 | 0.025756 | 0.019820 | 0.051878 | 0.128521 | 0.239667 | 0.041065 | 0.032839 | 0.008127 | 0.015395 | 0.027027 | 0.027420 | 0.020989 | 0.018026 | 0.039466 | 0.090171 | 0.075016 | 0.036252 | 0.037163 | 0.065410 | 0.035393 | 0.020649 | 0.030855 | 0.031480 | 0.036507 | 0.026200 | 0.050527 | 0.126116 | 0.125357 | 0.054350 | 0.047741 | 0.002026 | 0.007067 | 0.012767 | 0.014999 | 0.016464 | 0.090926 | 0.052566 | 0.058482 | 0.030202 | 0.041133 | 0.039203 | 0.029094 | 0.021753 | 0.033467 | 0.040912 | 0.024244 | 0.038699 | 0.025500 | 0.045168 | 0.103450 | 0.108203 | 0.062956 | 0.048850 | 0.023629 | 0.027969 | 0.013680 | 0.014419 | 0.025493 | 0.007954 | 0.025397 | 0.036891 | 0.053578 | 0.041111 | 0.040525 | 0.037977 | 0.026780 | 0.040914 | 0.059131 | 0.048805 | 0.051981 | 0.040530 | 0.049537 | 0.059025 | 0.078777 | 0.070291 | 0.056160 | 0.028709 | 0.035887 | 0.040605 | 0.042591 | 0.026845 | 0.022039 | 0.027035 | 0.042073 | 0.043381 | 0.040552 | 0.040987 | 0.054155 | 0.066387 | 0.063583 | 0.059575 | 0.052021 | 0.068460 | 0.054099 | 0.129755 | 0.020011 | 0.036822 | 0.042941 | 0.037583 | 0.009656 | 0.017845 | 0.027976 | 0.026101 | 0.016962 | 0.018217 | 0.029149 | 0.036300 | 0.065432 | 0.043473 | 0.042880 | 0.025155 | 0.023838 | 0.032150 | 0.039964 | 0.055690 | 0.043721 | 0.075102 | 0.076906 | 0.045870 | 0.051201 | 0.045220 | 0.091284 | 0.078466 | 0.034623 | 0.011269 | 0.010538 | 0.023553 | 0.032837 | 0.030686 | 0.030414 | 0.041301 | 0.033481 | 0.034361 | 0.063916 | 0.108155 | 0.139418 | 0.086923 | 0.071254 | 0.028400 | 0.035041 | 0.036489 | 0.034246 | 0.030458 | 0.034184 | 0.036234 | 0.026309 | 0.018402 | 0.015990 | 0.015742 | 0.015759 | 0.620700 | 0.379300 | 0.000000 |
TSSK4 | 0.052728 | 0.027791 | 0.059114 | 0.053775 | 0.036460 | 0.036364 | 0.077692 | 0.076985 | 0.115165 | 0.056947 | 0.044673 | 0.036815 | 0.035141 | 0.033569 | 0.040793 | 0.060000 | 0.034332 | 0.024112 | 0.013683 | 0.011410 | 0.022643 | 0.021738 | 0.028070 | 0.029160 | 0.058073 | 0.059669 | 0.042281 | 0.039931 | 0.039793 | 0.040242 | 0.034511 | 0.042144 | 0.051907 | 0.027392 | 0.036469 | 0.032939 | 0.054183 | 0.099418 | 0.088901 | 0.040957 | 0.040556 | 0.024174 | 0.039583 | 0.028542 | 0.031062 | 0.018114 | 0.057667 | 0.046000 | 0.050294 | 0.032826 | 0.034368 | 0.035929 | 0.028808 | 0.023344 | 0.025414 | 0.033727 | 0.021281 | 0.030275 | 0.027176 | 0.057613 | 0.111045 | 0.189078 | 0.041813 | 0.038692 | 0.014025 | 0.023164 | 0.027983 | 0.028601 | 0.020876 | 0.024183 | 0.046774 | 0.083527 | 0.070331 | 0.041056 | 0.042470 | 0.060570 | 0.036528 | 0.023113 | 0.034264 | 0.039010 | 0.037698 | 0.034880 | 0.049172 | 0.099556 | 0.077305 | 0.056535 | 0.060101 | 0.017323 | 0.018576 | 0.014551 | 0.015900 | 0.016576 | 0.081065 | 0.061904 | 0.055609 | 0.032369 | 0.042901 | 0.040985 | 0.030295 | 0.024896 | 0.035281 | 0.045901 | 0.028236 | 0.039934 | 0.028533 | 0.046500 | 0.093109 | 0.093223 | 0.060791 | 0.049695 | 0.026890 | 0.026179 | 0.013563 | 0.014949 | 0.027192 | 0.000000 | 0.029969 | 0.039070 | 0.047886 | 0.041985 | 0.042070 | 0.039563 | 0.033557 | 0.043256 | 0.065946 | 0.066799 | 0.055416 | 0.044437 | 0.049172 | 0.053947 | 0.070393 | 0.067609 | 0.050689 | 0.026755 | 0.032607 | 0.034816 | 0.035600 | 0.028457 | 0.022125 | 0.030072 | 0.043746 | 0.043979 | 0.040514 | 0.040628 | 0.056415 | 0.067637 | 0.062479 | 0.057405 | 0.055342 | 0.068655 | 0.059069 | 0.107542 | 0.016290 | 0.023216 | 0.039592 | 0.036376 | 0.014476 | 0.020323 | 0.026238 | 0.026215 | 0.041665 | 0.016244 | 0.031620 | 0.036699 | 0.057738 | 0.041766 | 0.042658 | 0.029229 | 0.029311 | 0.036618 | 0.042735 | 0.057426 | 0.047430 | 0.085156 | 0.070591 | 0.038712 | 0.042855 | 0.043761 | 0.083382 | 0.072574 | 0.035593 | 0.014580 | 0.016641 | 0.026681 | 0.035851 | 0.033285 | 0.033330 | 0.041113 | 0.036743 | 0.036320 | 0.058757 | 0.093853 | 0.119285 | 0.082519 | 0.066321 | 0.029773 | 0.036372 | 0.037973 | 0.033146 | 0.029864 | 0.035657 | 0.038069 | 0.030552 | 0.023436 | 0.021363 | 0.022620 | 0.023797 | 0.569166 | 0.358863 | 0.071971 |
WEE2 | 0.043967 | 0.075610 | 0.066270 | 0.022744 | 0.035380 | 0.016544 | 0.036876 | 0.052500 | 0.080799 | 0.022085 | 0.026341 | 0.022279 | 0.018525 | 0.029408 | 0.080315 | 0.075319 | 0.040636 | 0.042321 | 0.066750 | 0.054230 | 0.031021 | 0.028095 | 0.031986 | 0.042869 | 0.086758 | 0.045162 | 0.023713 | 0.029243 | 0.023958 | 0.034570 | 0.044249 | 0.072020 | 0.026170 | 0.025481 | 0.016079 | 0.021329 | 0.033396 | 0.069211 | 0.068525 | 0.040078 | 0.039380 | 0.075558 | 0.068705 | 0.072290 | 0.029349 | 0.011905 | 0.059183 | 0.091238 | 0.078219 | 0.017050 | 0.016508 | 0.009258 | 0.038960 | 0.035152 | 0.043076 | 0.017049 | 0.023477 | 0.012678 | 0.008085 | 0.031861 | 0.073281 | 0.069517 | 0.038651 | 0.039370 | 0.049084 | 0.080480 | 0.093174 | 0.052211 | 0.022438 | 0.034737 | 0.097239 | 0.050473 | 0.034056 | 0.019104 | 0.006526 | 0.032920 | 0.023955 | 0.032882 | 0.018267 | 0.015706 | 0.004761 | 0.002667 | 0.014464 | 0.033755 | 0.042027 | 0.044284 | 0.070194 | 0.132836 | 0.134048 | 0.094661 | 0.049406 | 0.011032 | 0.044062 | 0.078456 | 0.059391 | 0.017279 | 0.017465 | 0.015591 | 0.060694 | 0.036641 | 0.082583 | 0.026307 | 0.035697 | 0.025075 | 0.007191 | 0.046183 | 0.060556 | 0.081128 | 0.044798 | 0.053526 | 0.052816 | 0.048690 | 0.039354 | 0.019848 | 0.046669 | 0.000000 | 0.146733 | 0.039054 | 0.036102 | 0.016717 | 0.011760 | 0.066982 | 0.074497 | 0.036724 | 0.037622 | 0.039006 | 0.012272 | 0.015387 | 0.014001 | 0.084789 | 0.098231 | 0.032632 | 0.037891 | 0.037673 | 0.067815 | 0.036568 | 0.030217 | 0.027327 | 0.033869 | 0.071613 | 0.071329 | 0.029926 | 0.017721 | 0.018773 | 0.066162 | 0.044255 | 0.054582 | 0.025666 | 0.031754 | 0.032632 | 0.026301 | 0.045391 | 0.075666 | 0.104309 | 0.027431 | 0.069056 | 0.036004 | 0.032605 | 0.043191 | 0.033639 | 0.008123 | 0.070788 | 0.083901 | 0.044681 | 0.017935 | 0.017282 | 0.013780 | 0.060448 | 0.045041 | 0.094324 | 0.019183 | 0.050876 | 0.021346 | 0.027009 | 0.040054 | 0.071068 | 0.109179 | 0.034782 | 0.036738 | 0.046085 | 0.034930 | 0.030356 | 0.018590 | 0.011623 | 0.053925 | 0.082393 | 0.064062 | 0.013706 | 0.022838 | 0.018505 | 0.049247 | 0.036580 | 0.056739 | 0.016486 | 0.034869 | 0.018795 | 0.033647 | 0.030841 | 0.094766 | 0.096597 | 0.040385 | 0.036239 | 0.040689 | 0.067024 | 0.036481 | 0.036286 | 0.018901 | 0.345801 | 0.372509 | 0.281690 |
STK32A | 0.042088 | 0.048958 | 0.043909 | 0.042148 | 0.039149 | 0.039619 | 0.035109 | 0.038230 | 0.032561 | 0.036990 | 0.039822 | 0.044389 | 0.042409 | 0.046752 | 0.047287 | 0.052673 | 0.036711 | 0.042259 | 0.042804 | 0.037494 | 0.053057 | 0.054500 | 0.061083 | 0.043605 | 0.046288 | 0.041353 | 0.039434 | 0.041191 | 0.038272 | 0.034217 | 0.032662 | 0.035199 | 0.036823 | 0.036835 | 0.036977 | 0.041268 | 0.038293 | 0.041026 | 0.045493 | 0.035155 | 0.038190 | 0.041974 | 0.047614 | 0.074720 | 0.074024 | 0.059386 | 0.035833 | 0.030871 | 0.032162 | 0.035356 | 0.031169 | 0.031806 | 0.030441 | 0.029950 | 0.027791 | 0.030205 | 0.030785 | 0.033947 | 0.029999 | 0.032071 | 0.025611 | 0.061684 | 0.030103 | 0.029443 | 0.036652 | 0.047217 | 0.130831 | 0.130034 | 0.066041 | 0.044565 | 0.034198 | 0.034086 | 0.043920 | 0.036184 | 0.036320 | 0.031351 | 0.032022 | 0.051327 | 0.039138 | 0.049859 | 0.041268 | 0.038005 | 0.034934 | 0.027656 | 0.030420 | 0.035404 | 0.036394 | 0.026301 | 0.031036 | 0.059159 | 0.060801 | 0.145654 | 0.056115 | 0.048990 | 0.038302 | 0.038636 | 0.041204 | 0.040568 | 0.039856 | 0.036125 | 0.040662 | 0.047873 | 0.043651 | 0.048880 | 0.036103 | 0.041382 | 0.052906 | 0.064304 | 0.043274 | 0.038753 | 0.027183 | 0.032817 | 0.044028 | 0.043816 | 0.054571 | 0.021531 | 0.028537 | 0.028373 | 0.038668 | 0.039189 | 0.038405 | 0.051296 | 0.062902 | 0.043929 | 0.062803 | 0.089980 | 0.043558 | 0.040010 | 0.032584 | 0.033808 | 0.046026 | 0.037831 | 0.022418 | 0.015478 | 0.028611 | 0.060652 | 0.061338 | 0.072072 | 0.017621 | 0.021457 | 0.030677 | 0.031442 | 0.026585 | 0.026038 | 0.034290 | 0.034485 | 0.026500 | 0.030659 | 0.036728 | 0.043694 | 0.044186 | 0.027152 | 0.015201 | 0.015454 | 0.021167 | 0.018053 | 0.028275 | 0.029752 | 0.037259 | 0.037739 | 0.365584 | 0.021352 | 0.031640 | 0.033771 | 0.040891 | 0.036303 | 0.037887 | 0.042047 | 0.044009 | 0.039734 | 0.039842 | 0.044166 | 0.043477 | 0.052977 | 0.039275 | 0.026209 | 0.031257 | 0.031869 | 0.031070 | 0.037814 | 0.042506 | 0.068686 | 0.068696 | 0.114522 | 0.041301 | 0.035156 | 0.037080 | 0.032705 | 0.037500 | 0.037323 | 0.034375 | 0.033726 | 0.033730 | 0.034566 | 0.032953 | 0.034890 | 0.040020 | 0.036438 | 0.036881 | 0.041973 | 0.034480 | 0.033865 | 0.035673 | 0.040218 | 0.061115 | 0.061496 | 0.152536 | 0.488526 | 0.511474 | 0.000000 |
65 rows × 210 columns
Visualize predicted PSSMs
for i,r in selected_df.iterrows():
print(f'{r.family}:{r.Pearson_family}')
= r.kinase
k = get_one_kinase(preds_final,k,drop_s=False).T
matrix
get_logo2(matrix, k)
plt.show()
plt.close()
-3],k)
get_heatmap(preds_final.iloc[:,:
plt.show() plt.close()
STKR:0.8578397866239376
STKR:0.8578397866239376
CDK:0.9232645242649458
CDKL:0.76311665060942
CDKL:0.76311665060942
CDKL:0.76311665060942
DCAMKL:0.9019845007257056
DMPK:0.9546690741027648
DAPK:0.7920828111362217
MAPK:0.8818759660317733
MAPK:0.8818759660317733
MLK:0.7337835153843144
MLK:0.7337835153843144
STE11:0.7499031572306992
STKR:0.8578397866239376
NEK:0.7782348100131159
STE20:0.8639317629980943
PDHK:0.6766899079964322
CDK:0.9232645242649458
CDK:0.9232645242649458
NKF1:0.7342624924789267
NKF1:0.7342624924789267
RIPK:0.62712483511819
LISK:0.5764010061153408
TSSK:0.8477050673723502
TSSK:0.8477050673723502
YANK:0.8166840920260132
Save images
Create folder: predict/logo, predict/heatmap, predict/combine
# !mkdir predict
# !mkdir predict/logo
# !mkdir predict/heatmap
# !mkdir predict/combine
# clear contents in the folder
# !rm -r predict/logo/*
# !rm -r predict/heatmap/*
# !rm -r predict/combine/*
# for i,r in selected.iterrows():
# print(f'{r.family}:{r.Pearson_family}')
# k = r.kinase
# matrix = get_one_kinase(preds_final,k,drop_s=False).T
# get_logo2(matrix, k)
# plt.savefig(f'predict/logo/{k}.png',bbox_inches='tight', pad_inches=0.3) #0.3
# plt.close()
# get_heatmap(preds_final.iloc[:,:-3],k,figsize=(7.5,10))
# plt.savefig(f'predict/heatmap/{k}.png',bbox_inches='tight', pad_inches=0)
# plt.close()
# # break
Save and combine images for pdf
def combine_images_vertically(image_paths, output_path):
= [Image.open(image_path).convert('RGBA') for image_path in image_paths]
images
= max(image.width for image in images)
total_width = sum(image.height for image in images)
total_height
= Image.new('RGBA', (total_width, total_height))
combined_image
= 0
y_offset for image in images:
0, y_offset), image)
combined_image.paste(image, (+= image.height
y_offset
combined_image.save(output_path)
# folders = ["predict/logo", "predict/heatmap"]
# for i,r in tqdm(selected.iterrows(),total=len(selected)):
# k = r.kinase
# filename = f"{k}.png"
# image_paths = [os.path.join(folder, filename) for folder in folders]
# output_path = f"predict/combine/{k}.png"
# combine_images_vertically(image_paths, output_path)
# # break
# !zip -rq predict.zip predict/combine/*