DL/ML Training

Setup

# essentials
from fastbook import *
from katlas.imports import *
from katlas.train import *
from katlas.dl import *
import seaborn as sns

# sklearn
from sklearn.neighbors import *
from sklearn.linear_model import *
from sklearn.tree import *
from sklearn.svm import *
from sklearn.ensemble import *
from sklearn.multioutput import MultiOutputRegressor

Data

# T5 data
t5_kd = pd.read_parquet('train_data/combine_t5_kd.parquet').reset_index()
t5 = pd.read_parquet('train_data/combine_t5.parquet').reset_index()

# ESM data
esm_kd = pd.read_parquet('train_data/combine_esm_kd.parquet').reset_index()
esm = pd.read_parquet('train_data/combine_esm.parquet').reset_index()

# feature col
t5_col = t5.columns[t5.columns.str.startswith('T5_')]
esm_col = esm.columns[esm.columns.str.startswith('esm_')]

# target col
target_col = t5.columns[~t5.columns.isin(t5_col)][1:]
t5_col,esm_col,target_col
(Index(['T5_0', 'T5_1', 'T5_2', 'T5_3', 'T5_4', 'T5_5', 'T5_6', 'T5_7', 'T5_8',
        'T5_9',
        ...
        'T5_1014', 'T5_1015', 'T5_1016', 'T5_1017', 'T5_1018', 'T5_1019',
        'T5_1020', 'T5_1021', 'T5_1022', 'T5_1023'],
       dtype='object', length=1024),
 Index(['esm_0', 'esm_1', 'esm_2', 'esm_3', 'esm_4', 'esm_5', 'esm_6', 'esm_7',
        'esm_8', 'esm_9',
        ...
        'esm_1270', 'esm_1271', 'esm_1272', 'esm_1273', 'esm_1274', 'esm_1275',
        'esm_1276', 'esm_1277', 'esm_1278', 'esm_1279'],
       dtype='object', length=1280),
 Index(['-5P', '-5G', '-5A', '-5C', '-5S', '-5T', '-5V', '-5I', '-5L', '-5M',
        ...
        '4Q', '4N', '4D', '4E', '4s', '4t', '4y', '0s', '0t', '0y'],
       dtype='object', length=210))

Kfold Split

source = pd.read_excel('train_data/combine_info_PSPA.xlsx').iloc[:,:2]

info = Data.get_kinase_info().query('pseudo !="1"')

info = source.merge(info,how='left')
info[info.kinase.str.contains('MEK')]
kinase source ID_coral uniprot ID_HGNC group family subfamily_coral subfamily in_ST_paper in_Tyr_paper in_cddm pseudo pspa_category_small pspa_category_big cddm_big cddm_small length human_uniprot_sequence kinasecom_domain nucleus cytosol cytoskeleton plasma membrane mitochondrion Golgi apparatus endoplasmic reticulum vesicle centrosome aggresome main_location
183 MEK1 PSPA MAP2K1 Q02750 MAP2K1 STE STE7 None STE7 1 0 1 0 assorted assorted 2.0 12.0 393 MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRLEAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIHLEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGSLDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNSRGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMGLSLVEMAVGRYPIPPPDAKELELMFGCQVEGDAAETPPRPRTPGRPLSSYGMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERADLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAAGV FEKISELGAGNGGVVFKVSHKPSGLVMARKLIHLEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGSLDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNSRGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMGLSLVEMAVGRYPIPPPDAKELELMFGCQVEGDAAETPPRPRTPGRPLSSYGMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERADLKQLMVHAFI NaN 7.0 NaN 3.0 NaN NaN NaN NaN NaN NaN cytosol
184 MEK2 PSPA MAP2K2 P36507 MAP2K2 STE STE7 None STE7 1 0 1 0 assorted assorted 2.0 12.0 95 MLARRKPVLPALTINPTIAEGPSPTSEGASEANLVDLQKKLEELELDEQQKKRLEAFLTQKAKVGELKDDDFERISELGAGNGGVVTKVQHRPSGLIMARKLIHLEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGSLDQVLKEAKRIPEEILGKVSIAVLRGLAYLREKHQIMHRDVKPSNILVNSRGEIKLCDFGVSGQLIDSMANSFVGTRSYMAPERLQGTHYSVQSDIWSMGLSLVELAVGRYPIPPPDAKELEAIFGRPVVDGEEGEPHSISPRPRPPGRPVSGHGMDSRPAMAIFELLDYIVNEPPPKLPNGVFTPDFQEFVNKCLIKNPAERADLKMLTNHTFIKRSEVEEVDFAGWLCKTLRLNQPGTPTRTAV FERISELGAGNGGVVTKVQHRPSGLIMARKLIHLEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGSLDQVLKEAKRIPEEILGKVSIAVLRGLAYLREKHQIMHRDVKPSNILVNSRGEIKLCDFGVSGQLIDSMANSFVGTRSYMAPERLQGTHYSVQSDIWSMGLSLVELAVGRYPIPPPDAKELEAIFGRPVVDGEEGEPHSISPRPRPPGRPVSGHGMDSRPAMAIFELLDYIVNEPPPKLPNGVFTPDFQEFVNKCLIKNPAERADLKMLTNHTFI NaN 7.0 NaN 3.0 NaN NaN NaN NaN NaN NaN cytosol
185 MEK5 PSPA MAP2K5 Q13163 MAP2K5 STE STE7 None STE7 1 0 1 0 MAP3K MAP3K 2.0 7.0 448 MLWLALGPFPAMENQVLVIRIKIPNSGAVDWTVHSGPQLLFRDVLDVIGQVLPEATTTAFEYEDEDGDRITVRSDEEMKAMLSYYYSTVMEQQVNGQLIEPLQIFPRACKPPGERNIHGLKVNTRAGPSQHSSPAVSDSLPSNSLKKSSAELKKILANGQMNEQDIRYRDTLGHGNGGTVYKAYHVPSGKILAVKVILLDITLELQKQIMSELEILYKCDSSYIIGFYGAFFVENRISICTEFMDGGSLDVYRKMPEHVLGRIAVAVVKGLTYLWSLKILHRDVKPSNMLVNTRGQVKLCDFGVSTQLVNSIAKTYVGTNAYMAPERISGEQYGIHSDVWSLGISFMELALGRFPYPQIQKNQGSLMPLQLLQCIVDEDSPVLPVGEFSEPFVHFITQCMRKQPKERPAPEELMGHPFIVQFNDGNAAVVSMWVCRALEERRSQQGPP IRYRDTLGHGNGGTVYKAYHVPSGKILAVKVILLDITLELQKQIMSELEILYKCDSSYIIGFYGAFFVENRISICTEFMDGGSLDVYRKMPEHVLGRIAVAVVKGLTYLWSLKILHRDVKPSNMLVNTRGQVKLCDFGVSTQLVNSIAKTYVGTNAYMAPERISGEQYGIHSDVWSLGISFMEIQKNQGSLMPLQLLQCIVDEDSPVLPVGEFSEPFVHFITQCMRKQPKERPAPEELMGHPFI 3.0 6.0 NaN 1.0 NaN NaN NaN NaN NaN NaN cytosol
186 MEKK1 PSPA MAP3K1 Q13233 MAP3K1 STE STE11 None STE11 1 0 1 0 MAP3K MAP3K 2.0 9.0 339 MAAAAGNRASSSGFPGARATSPEAGGGGGALKASSAPAAAAGLLREAGSGGRERADWRRRQLRKVRSVELDQLPEQPLFLAASPPASSTSPSPEPADAAGSGTGFQPVAVPPPHGAASRGGAHLTESVAAPDSGASSPAAAEPGEKRAPAAEPSPAAAPAGREMENKETLKGLHKMDDRPEERMIREKLKATCMPAWKHEWLERRNRRGPVVVKPIPVKGDGSEMNHLAAESPGEVQASAASPASKGRRSPSPGNSPSGRTVKSESPGVRRKRVSPVPFQSGRITPPRRAPSPDGFSPYSPEETNRRVNKVMRARLYLLQQIGPNSFLIGGDSPDNKYRVFIGPQNCSCARGTFCIHLLFVMLRVFQLEPSDPMLWRKTLKNFEVESLFQKYHSRRSSRIKAPSRNTIQKFVSRMSNSHTLSSSSTSTSSSENSIKDEEEQMCPICLLGMLDEESLTVCEDGCRNKLHHHCMSIWAEECRRNREPLICPLCRSKWRSHDFYSHELSSPVDSPSSLRAAQQQTVQQQPLAGSRRNQESNFNLTHYGTQQIPPAYKDLAEPWIQVFGMELVGCLFSRNWNVREMALRRLSHDVSGALL... WLKGQQIGLGAFSSCYQAQDVGTGTLMAVKQVTYVRNTSSEQEEVVEALREEIRMMSHLNHPNIIRMLGATCEKSNYNLFIEWMAGGSVAHLLSKYGAFKESVVINYTEQLLRGLSYLHENQIIHRDVKGANLLIDSTGQRLRIADFGAAARLASKGTGAGEFQGQLLGTIAFMAPEVLRGQQYGRSCDVWSVGCAIIEMACAKPPWNAEKHSNHLALIFKIASATTAPSIPSHLSPGLRDVALRCLELQPQDRPPSRELLKHPVF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN None
187 MEKK2 PSPA MAP3K2 Q9Y2U5 MAP3K2 STE STE11 None STE11 1 0 1 0 MAP3K MAP3K 2.0 12.0 619 MDDQQALNSIMQDLAVLHKASRPALSLQETRKAKSSSPKKQNDVRVKFEHRGEKRILQFPRPVKLEDLRSKAKIAFGQSMDLHYTNNELVIPLTTQDDLDKAVELLDRSIHMKSLKILLVINGSTQATNLEPLPSLEDLDNTVFGAERKKRLSIIGPTSRDRSSPPPGYIPDELHQVARNGSFTSINSEGEFIPESMDQMLDPLSLSSPENSGSGSCPSLDSPLDGESYPKSRMPRAQSYPDNHQEFSDYDNPIFEKFGKGGTYPRRYHVSYHHQEYNDGRKTFPRARRTQGTSLRSPVSFSPTDHSLSTSSGSSIFTPEYDDSRIRRRGSDIDNPTLTVMDISPPSRSPRAPTNWRLGKLLGQGAFGRVYLCYDVDTGRELAVKQVQFDPDSPETSKEVNALECEIQLLKNLLHERIVQYYGCLRDPQEKTLSIFMEYMPGGSIKDQLKAYGALTENVTRKYTRQILEGVHYLHSNMIVHRDIKGANILRDSTGNVKLGDFGASKRLQTICLSGTGMKSVTGTPYWMSPEVISGEGYGRKADIWSVACTVVEMLTEKPPWAEFEAMAAIFKIATQPTNPKLPPHVSDYTRDFLKR... WRLGKLLGQGAFGRVYLCYDVDTGRELAVKQVQFDPDSPETSKEVNALECEIQLLKNLLHERIVQYYGCLRDPQEKTLSIFMEYMPGGSIKDQLKAYGALTENVTRKYTRQILEGVHYLHSNMIVHRDIKGANILRDSTGNVKLGDFGASKRLQTICLSGTGMKSVTGTPYWMSPEVISGEGYGRKADIWSVACTVVEMLTEKPPWAEFEAMAAIFKIATQPTNPKLPPHVSDYTRDFLKRIFVEAKLRPSADELLRHMFV 2.0 8.0 NaN NaN NaN NaN NaN NaN NaN NaN cytosol
188 MEKK3 PSPA MAP3K3 Q99759 MAP3K3 STE STE11 None STE11 1 0 1 0 MAP3K MAP3K 2.0 12.0 626 MDEQEALNSIMNDLVALQMNRRHRMPGYETMKNKDTGHSNRQSDVRIKFEHNGERRIIAFSRPVKYEDVEHKVTTVFGQPLDLHYMNNELSILLKNQDDLDKAIDILDRSSSMKSLRILLLSQDRNHNSSSPHSGVSRQVRIKASQSAGDINTIYQPPEPRSRHLSVSSQNPGRSSPPPGYVPERQQHIARQGSYTSINSEGEFIPETSEQCMLDPLSSAENSLSGSCQSLDRSADSPSFRKSRMSRAQSFPDNRQEYSDRETQLYDKGVKGGTYPRRYHVSVHHKDYSDGRRTFPRIRRHQGNLFTLVPSSRSLSTNGENMGLAVQYLDPRGRLRSADSENALSVQERNVPTKSPSAPINWRRGKLLGQGAFGRVYLCYDVDTGRELASKQVQFDPDSPETSKEVSALECEIQLLKNLQHERIVQYYGCLRDRAEKTLTIFMEYMPGGSVKDQLKAYGALTESVTRKYTRQILEGMSYLHSNMIVHRDIKGANILRDSAGNVKLGDFGASKRLQTICMSGTGMRSVTGTPYWMSPEVISGEGYGRKADVWSLGCTVVEMLTEKPPWAEYEAMAAIFKIATQPTNPQLPSHISEHG... WRRGKLLGQGAFGRVYLCYDVDTGRELASKQVQFDPDSPETSKEVSALECEIQLLKNLQHERIVQYYGCLRDRAEKTLTIFMEYMPGGSVKDQLKAYGALTESVTRKYTRQILEGMSYLHSNMIVHRDIKGANILRDSAGNVKLGDFGASKRLQTICMSGTGMRSVTGTPYWMSPEVISGEGYGRKADVWSLGCTVVEMLTEKPPWAEYEAMAAIFKIATQPTNPQLPSHISEHGRDFLRRIFVEARQRPSAEELLTHHFA NaN 10.0 NaN NaN NaN NaN NaN NaN NaN NaN cytosol
342 MEKK6 PSPA MAP3K6 O95382 MAP3K6 STE STE11 None STE11 1 0 0 0 NEK/ASK NEK/ASK NaN NaN 331 MAGPCPRSGAERAGSCWQDPLAVALSRGRQLAAPPGRGCARSRPLSVVYVLTREPQPGLEPREGTEAEPLPLRCLREACAQVPRPRPPPQLRSLPFGTLELGDTAALDAFYNADVVVLEVSSSLVQPSLFYHLGVRESFSMTNNVLLCSQADLPDLQALREDVFQKNSDCVGSYTLIPYVVTATGRVLCGDAGLLRGLADGLVQAGVGTEALLTPLVGRLARLLEATPTDSCGYFRETIRRDIRQARERFSGPQLRQELARLQRRLDSVELLSPDIIMNLLLSYRDVQDYSAIIELVETLQALPTCDVAEQHNVCFHYTFALNRRNRPGDRAKALSVLLPLVQLEGSVAPDLYCMCGRIYKDMFFSSGFQDAGHREQAYHWYRKAFDVEPSLHSGINAAVLLIAAGQHFEDSKELRLIGMKLGCLLARKGCVEKMQYYWDVGFYLGAQILANDPTQVVLAAEQLYKLNAPIWYLVSVMETFLLYQHFRPTPEPPGGPPRRAHFWLHFLLQSCQPFKTACAQGDQCLVLVLEMNKVLLPAKLEVRGTDPVSTVTLSLLEPETQDIPSSWTFPVASICGVSASKRDERCCFLYALPPA... YTETGERLVLGKGTYGVVYAGRDRHTRVRIAIKEIPERDSRFSQPLHEEIALHRRLRHKNIVRYLGSASQGGYLKIFMEEVPGGSLSSLLRSVWGPLKDNESTISFYTRQILQGLGYLHDNHIVHRDIKGDNVLINTFSGLLKISDFGTSKRLAGITPCTETFTGTLQYMAPEIIDQGPRGYGKAADIWSLGCTVIEMATGRPPFHELGSPQAAMFQVGMYKVHPPMPSSLSAEAQAFLLRTFEPDPRLRASAQTLLGDPFL 3.0 3.0 NaN NaN NaN NaN NaN NaN NaN 4.0 aggresome
map2 = t5[t5.kinase.str.contains('MEK')]
map2 = map2.set_index('kinase')
target = map2.loc[:,~map2.columns.str.contains('T5_')]
target
-5P -5G -5A -5C -5S -5T -5V -5I -5L -5M -5F -5Y -5W -5H -5K -5R -5Q -5N -5D -5E -5s -5t -5y -4P -4G -4A -4C -4S -4T -4V -4I -4L -4M -4F -4Y -4W -4H -4K -4R -4Q -4N -4D -4E -4s -4t -4y -3P -3G -3A -3C -3S -3T -3V -3I -3L -3M -3F -3Y -3W -3H -3K -3R -3Q -3N -3D -3E -3s -3t -3y -2P -2G -2A -2C -2S -2T -2V -2I -2L -2M -2F -2Y -2W -2H -2K -2R -2Q -2N -2D -2E -2s -2t -2y -1P -1G -1A -1C -1S -1T -1V -1I -1L -1M -1F -1Y -1W -1H -1K -1R -1Q -1N -1D -1E -1s -1t -1y 1P 1G 1A 1C 1S 1T 1V 1I 1L 1M 1F 1Y 1W 1H 1K 1R 1Q 1N 1D 1E 1s 1t 1y 2P 2G 2A 2C 2S 2T 2V 2I 2L 2M 2F 2Y 2W 2H 2K 2R 2Q 2N 2D 2E 2s 2t 2y 3P 3G 3A 3C 3S 3T 3V 3I 3L 3M 3F 3Y 3W 3H 3K 3R 3Q 3N 3D 3E 3s 3t 3y 4P 4G 4A 4C 4S 4T 4V 4I 4L 4M 4F 4Y 4W 4H 4K 4R 4Q 4N 4D 4E 4s 4t 4y 0s 0t 0y
kinase
MEK1 -0.179089 -0.625424 0.190732 0.063208 -0.147207 -0.147207 -0.019683 -0.159960 -0.147207 -0.281108 3.091911 0.082336 0.101465 0.031327 -0.217346 -0.281108 -0.363999 -0.376751 0.375642 -0.121703 -0.230098 -0.230098 -0.408632 -0.760494 -0.414864 -0.056889 0.054206 -0.056889 -0.056889 0.165301 -0.198845 -0.451896 0.146786 0.072722 0.270225 0.344289 0.350461 -0.562991 -0.334628 -0.433380 -0.149469 0.406008 0.665231 0.449212 0.449212 0.103582 -1.220768 -1.155581 -0.130373 -0.130373 -0.130373 -0.130373 -0.408898 -0.207412 -0.130373 -0.124447 -0.047408 2.941334e-15 0.562975 0.053335 0.124447 1.060764 -0.480011 -0.965947 -0.142225 -0.183708 2.222272 2.222272 -0.657792 -1.346319 -0.609511 -0.105379 0.133761 -0.105379 -0.105379 -1.139495 -1.042547 -0.693533 0.204856 2.854780 0.650819 0.612040 4.031088 -0.764628 -0.053673 -0.512562 0.094981 -0.053673 -0.150621 -0.557805 -0.557805 -0.784018 -0.792424 1.390568 0.193444 -0.465935 0.155033 0.155033 -0.491542 -0.786022 1.275337 0.590351 -0.171455 0.724788 0.155033 0.161435 0.327880 0.257461 -0.043420 -0.075429 -0.389114 -0.965270 -0.408319 -0.408319 -0.389114 -1.175890 -1.019384 -1.205987 0.467425 -0.579963 -0.579963 0.599853 1.851902 0.491503 1.340248 0.491503 0.334996 0.304899 -0.579963 -1.458805 -1.506961 -1.055501 -1.073559 1.809766 -0.622099 1.466656 1.466656 0.232666 -0.772097 -1.008533 -0.043620 -0.490931 -0.535662 -0.535662 -0.254495 -0.535662 -0.989363 -0.216154 -0.880730 1.228021 -0.414249 9.381858 -0.529272 -0.490931 -0.714586 -0.912681 -0.548442 -1.072435 0.352570 0.352570 -0.369518 -0.100376 0.434324 -0.207316 -0.188444 -0.207316 -0.207316 -0.502973 -0.534426 -0.182153 -0.320546 -0.018598 1.107416 1.390492 1.088544 -0.270222 -0.295384 -0.528135 -0.528135 0.082051 -0.364580 -0.031179 -0.031179 0.415452 0.170123 0.270937 -0.207929 -0.056708 -0.170123 -0.170123 -0.371751 -0.069310 0.214230 -0.170123 -0.277238 0.932529 1.871358 0.012602 -0.403256 -0.441061 -0.289840 -0.611184 0.025203 -0.308743 0.094513 0.094513 -0.138619 0.088822 1.177916 -1.266738
MEK2 0.332485 0.213356 0.254593 -0.134867 0.048409 0.048409 0.414959 -0.698438 -0.538072 -0.121121 -0.066138 0.712781 0.699035 0.020917 0.048409 0.286666 -0.455598 -0.070720 0.052990 -0.556399 -0.199013 -0.199013 -0.093630 -0.307572 0.473250 -0.022361 0.183364 0.043097 0.043097 -0.494595 -0.438488 0.043097 0.225444 0.216093 0.945483 1.127831 0.206742 -0.466541 -0.106522 -0.368354 -0.129900 0.440521 0.117906 -0.625511 -0.625511 -0.480568 -0.725544 -0.591853 0.324886 0.754607 -0.176456 -0.176456 -0.176456 0.644789 1.255948 1.766839 1.580626 1.384865e+00 1.203427 -0.009342 -0.840136 -0.453387 -1.021574 -0.892657 -0.572754 -0.410415 -1.050222 -1.050222 -0.768516 -1.316955 -0.568562 -0.219312 0.139917 -0.264215 -0.264215 -1.017598 -0.828005 -0.423873 0.539060 3.392934 0.788525 1.122807 4.695138 -0.688305 0.169853 -0.593508 -0.408905 0.214756 -0.264215 -1.401773 -1.401773 -1.401773 -1.235675 1.228419 0.158354 -0.376678 0.266342 0.266342 -0.141068 -0.543569 1.645646 1.154790 0.771923 1.194059 0.443050 0.266342 0.300702 1.208784 -0.234330 -0.656466 -0.847899 -0.911710 -1.500737 -1.500737 -0.955887 -1.709590 -0.946947 -0.965662 0.274218 -0.366777 -0.366777 0.171284 1.598316 1.345661 2.534074 1.425201 2.019407 1.083649 -0.366777 -1.419505 -1.358681 -0.946947 -1.185565 0.976037 -0.769153 -0.399528 -0.399528 -0.226413 -0.693064 -0.382631 0.400841 0.425479 -0.210169 -0.210169 -0.131329 0.129829 -0.357994 0.617651 -0.037706 1.810106 0.745766 6.077321 -0.431906 -0.210169 -0.343211 -0.471326 -1.121756 -1.609579 -1.200596 -1.200596 -1.594796 -0.005189 0.758582 0.037773 -0.191358 -0.005189 -0.005189 -0.043377 0.209622 0.090283 -0.234320 0.281225 2.204971 1.565314 0.997260 -0.325017 -0.062471 -0.578016 -0.578016 -0.859657 -1.012411 -0.950354 -0.950354 -0.344112 0.218830 0.391229 -0.034979 0.151786 -0.034979 -0.034979 -0.580910 0.060798 -0.049346 -0.236112 0.137419 2.105641 2.852703 0.372074 -0.178645 0.108686 -0.437244 -0.537810 -0.676687 -0.920919 -0.954441 -0.954441 -0.767675 -0.370947 1.367336 -0.996389
MEK5 -0.458827 -0.198180 -0.344397 -0.280825 -0.446113 -0.446113 -0.649545 -0.598687 -0.496971 -0.477899 0.672763 1.149556 1.194057 0.558332 0.259542 0.647334 -0.706760 -0.458827 -0.446113 -0.706760 1.003340 1.003340 0.227755 -0.391335 0.283236 -0.089384 -0.025139 -0.089384 -0.089384 -0.815352 -1.008086 -0.841050 -0.237148 0.296085 0.411726 1.401098 0.334632 0.379604 0.899987 -0.648315 -0.224299 -0.057262 -0.089384 0.623734 0.623734 -0.648315 0.113049 0.455993 -0.061540 0.237756 -0.142599 -0.142599 -1.289901 -1.071664 -0.703779 -0.348365 -0.273541 3.811686e-01 0.518346 -0.049069 0.156697 1.852707 -0.809780 -0.479307 -0.142599 -0.541661 1.091997 1.091997 0.156697 -0.423574 -0.270555 -0.028275 0.233132 -0.423574 -0.423574 -0.908134 -1.188668 -0.653102 -0.557465 2.757943 1.565671 1.329767 -0.015524 -0.691357 0.800577 -0.646726 -0.595720 -0.308810 -1.054777 0.207629 0.207629 1.087487 -0.684442 0.789544 -0.009684 0.311317 -0.009684 -0.009684 -1.064403 -1.084056 0.304766 0.481644 -0.337236 0.697829 -0.428951 0.612665 0.579910 1.975283 -0.068644 0.357174 -0.265175 -0.992341 -0.553421 -0.553421 -0.048990 -1.336578 -1.072818 -1.013472 1.624135 -0.367258 -0.367258 0.839447 2.085716 0.859229 2.474763 0.522934 0.608656 2.797869 -0.367258 -0.420010 0.450400 -0.545296 -0.558484 -2.048732 -1.982792 -0.307912 -0.307912 -1.567369 -1.358870 -0.773718 -0.539657 -0.401974 -0.112840 -0.112840 -0.821907 -0.897632 -0.925169 -0.043999 -0.112840 2.558207 1.711458 5.504620 1.429208 2.392988 -0.085303 -0.016462 -1.875180 -1.964674 -0.856327 -0.856327 -1.840760 -0.966321 -0.034354 -0.851513 -0.216695 0.019673 0.019673 -0.702939 -0.149162 0.215521 0.418122 1.336582 1.350089 2.714271 0.566697 0.728778 1.586457 -0.405790 0.019673 -1.452564 -1.486331 -0.892033 -0.892033 -0.925800 0.424628 0.186754 -0.302588 -0.683187 0.078011 0.078011 -0.710373 -0.214235 -0.458906 0.016843 0.078011 1.036305 1.158640 0.478999 2.144120 1.899449 0.560556 -0.241420 -1.410403 -1.322050 -0.635612 -0.635612 -1.525942 -0.091744 1.268037 -1.176293
MEKK1 0.119784 1.838032 0.022433 0.197665 0.022433 0.022433 -1.077635 -0.615217 -1.325880 -0.556806 -0.542203 0.183062 -0.371839 0.450778 -0.376707 0.402103 -0.761244 0.168460 0.528659 0.587070 0.061374 0.061374 0.961872 -0.102935 1.022516 0.084640 0.039014 -0.016752 -0.016752 -0.751843 -0.792400 -0.807609 -0.574407 0.221519 -0.016752 1.651146 0.561182 -0.260092 -0.097865 -0.442598 0.028875 0.672713 0.287424 -0.102935 -0.102935 -0.483155 0.306855 1.173841 0.121768 0.560132 0.038966 0.038966 -1.110522 -0.511425 -0.730607 0.389657 -0.472459 3.653033e-01 0.686770 0.472459 -1.052073 -0.487071 -0.706253 -0.107156 0.038966 0.316596 0.058449 0.058449 0.550390 -0.464810 0.919156 0.232187 0.768725 0.101814 0.101814 -1.226995 -0.906075 0.101814 0.863998 0.031612 0.482906 -0.158934 0.989357 -1.041463 -0.489882 0.101814 0.788782 0.327460 -0.409652 -0.259221 -0.259221 -0.595184 -0.159676 0.868425 -0.758519 -0.557138 -0.159676 -0.159676 -1.447452 -1.314965 -0.726722 0.884324 -0.631331 -0.276265 -1.076488 2.956425 -0.477645 1.361278 0.449766 1.944222 1.276486 0.110598 -0.822112 -0.822112 -0.461747 -1.843098 -0.428787 -1.222977 0.060782 -0.211201 -0.211201 2.737094 4.570259 1.252067 3.063474 0.642826 0.740740 0.854972 -0.211201 -1.043468 -0.265597 0.136937 -0.738847 -1.908374 -1.951891 -1.331770 -1.331770 -1.358968 -1.059459 -0.038656 0.597974 0.707738 -0.274648 -0.274648 -0.433806 -0.274648 -1.361310 0.394911 -0.944207 0.833966 -0.362459 1.152281 2.112715 5.136708 -0.280136 1.514502 -0.587475 -1.525956 -1.641208 -1.641208 -1.750972 -0.514480 0.125721 -0.589170 -0.093015 0.184406 0.184406 -0.391775 1.304757 1.294087 1.651533 0.723242 1.342102 1.491483 0.301776 0.184406 0.957982 -0.669196 -0.658526 -1.496122 -1.704187 -1.320067 -1.320067 -0.989296 -0.090194 0.582034 -0.652134 -0.216236 0.198654 0.198654 -0.898967 0.555775 -0.116452 0.455991 -0.226740 0.403474 0.750091 0.849875 0.272179 2.005266 -0.400048 0.198654 -0.426307 -0.746666 -0.951485 -0.951485 -0.793932 0.046841 1.200652 -1.247493
MEKK2 -0.191770 0.438330 0.160898 -0.055405 -0.191770 -0.191770 -0.111832 -0.647887 -0.882999 -0.535033 -0.384561 -0.285814 0.043342 0.005724 0.024533 -0.309326 -0.859488 -0.497415 0.838021 0.273752 1.472823 1.472823 0.414819 0.005341 0.614621 0.162575 -0.048708 -0.161720 -0.161720 -0.481101 -0.825050 -0.771001 -0.343521 -0.019227 -0.431965 -0.186288 0.000427 -0.205942 -0.107671 -0.643248 -0.161720 1.390963 1.204248 0.604794 0.604794 -0.038881 -0.181919 1.501771 -0.318804 0.205923 -0.423749 -0.423749 -1.067111 -1.308942 -1.067111 -0.423749 -0.838968 -8.480941e-01 -0.934788 -0.546946 -0.286864 0.242426 -0.743149 -0.045033 1.383137 1.164121 2.199887 2.199887 0.561825 -0.656818 0.518413 0.314830 0.661847 -0.434727 -0.434727 -0.272786 -0.707714 -1.022343 -0.582788 0.046470 1.022745 -0.434727 0.060351 -0.855774 -0.874282 -0.615176 -0.684579 1.406777 -0.342189 0.592444 0.592444 2.702308 -1.008872 1.296773 0.166854 0.049791 0.166854 0.166854 -0.764565 -1.293896 -0.230144 0.395892 -0.922347 0.166854 -0.957975 1.138992 0.630019 1.220427 0.400982 0.553673 0.299187 -0.138529 -0.820552 -0.820552 0.304277 -1.678005 -0.255398 0.164559 0.993976 0.007075 0.007075 1.576667 1.975627 1.046470 2.668557 -0.407633 -0.076916 2.658058 0.007075 -0.712102 0.442781 0.201306 -1.042819 -2.003472 -2.024470 -0.953578 -0.953578 -1.641258 -1.636214 -0.795899 -0.120352 -0.296104 -0.120352 -0.120352 -0.263151 -0.894760 -0.697038 0.351982 -0.686054 3.169507 0.247629 4.185574 1.950227 3.323290 0.297059 -0.021491 -1.603260 -1.828442 -1.416524 -1.416524 -1.608752 -1.159134 -0.259238 -0.453952 -0.275026 0.356481 0.356481 -0.290813 0.445944 0.645921 0.456469 1.572130 0.772222 1.735270 0.356481 0.424894 1.135339 -0.138199 -0.111886 -0.985470 -1.459100 -1.090721 -1.090721 -0.943370 0.949054 0.117653 0.287111 -0.486039 -0.078282 -0.078282 -0.396015 -0.205375 -0.078282 0.011742 -0.523108 -0.279513 -0.104760 0.122949 2.987840 2.288828 0.546593 -0.750816 -1.174460 -0.787885 -0.565472 -0.565472 -1.238007 -0.133793 1.286148 -1.152355
MEKK3 -0.961703 -0.558302 -0.462444 -0.502385 -0.338628 -0.338628 -0.538332 -0.670136 -0.606231 -0.494397 -0.098984 -0.182859 0.140661 -0.055049 0.000868 -0.234782 -0.734041 -0.282711 -0.071025 -0.338628 3.104263 3.104263 1.119209 -0.840918 -0.391727 -0.430600 -0.361493 -0.218962 -0.218962 -0.383089 -0.443557 -0.348536 -0.033239 -0.283749 0.079059 0.018591 -0.218962 0.087697 0.057463 -0.827961 -0.145536 0.787398 0.420271 1.901737 1.901737 -0.106664 -0.997269 0.438322 -0.956944 -0.464972 -0.469004 -0.469004 -0.408516 -0.634339 -0.690795 -0.569818 -0.469004 -5.456228e-01 -0.384320 -0.533525 -0.343995 0.337508 -0.884358 -0.243181 0.591559 0.539136 2.914313 2.914313 1.329517 -1.035348 -0.479372 -0.585086 0.229302 -0.479372 -0.479372 -0.107416 -0.365828 -0.882650 -0.381489 -0.197469 0.299778 -0.052602 -0.444134 -1.352489 -0.604662 -0.780852 -0.565509 1.098504 -0.506779 2.292678 2.292678 3.087489 -1.449374 0.556915 -0.517564 -0.415021 -0.236684 -0.236684 -0.918822 -0.749402 -0.294643 -0.236684 -0.348144 -0.062806 -0.486355 0.547998 0.369661 1.314846 -0.526481 0.699584 0.650542 -0.062806 0.512331 0.512331 1.377264 -1.772655 -1.045354 -0.745049 0.531246 -0.562051 -0.562051 1.230393 2.164153 1.408698 2.089076 0.944165 0.362324 4.449284 -0.562051 -1.284660 -0.515129 -0.820126 -1.387889 -1.871192 -1.819577 0.376401 0.376401 -0.984355 -2.028483 -1.405019 -0.877123 0.083102 -0.344676 -0.344676 -0.458447 -0.717844 -0.544912 0.096755 -0.344676 1.307275 -0.048872 4.124238 1.079734 1.757807 -0.308269 0.046695 -0.986343 -1.268494 1.020573 1.020573 -0.858920 -1.723039 -0.231616 -0.762936 0.103954 0.043365 0.043365 -0.348134 0.043365 0.584006 0.341649 1.073379 0.747130 1.581395 0.103954 0.537399 0.453506 -0.655740 0.006079 -0.609133 -0.632436 -0.450669 -0.450669 0.201828 -0.101846 -0.305341 -0.178722 -0.052103 -0.156111 -0.156111 -0.757553 -0.156111 -0.526925 -0.178722 -0.273686 0.006685 -0.006881 -0.427438 1.806487 0.879453 0.124260 -0.151589 -0.694243 0.065472 0.933719 0.933719 -0.626411 0.197119 1.114230 -1.311349
MEKK6 0.243776 0.440910 0.440910 -0.228428 0.110825 0.110825 0.023720 -1.007794 -0.343041 -0.320118 -0.301780 -0.288026 0.179593 0.688473 0.885607 1.192768 0.422572 0.110825 -1.039885 -0.741892 -0.196336 -0.196336 -0.187167 -0.405693 0.324959 0.157421 -0.163693 0.124844 0.124844 0.115536 -0.680268 -0.582538 0.925303 -0.117155 0.585573 0.399420 0.953226 0.906687 0.557650 0.124844 -0.042694 -1.052575 -0.908306 -0.349847 -0.349847 -0.647692 -0.542568 0.491918 0.738890 0.282225 0.123790 0.123790 0.035253 -0.645085 -0.160461 -0.309576 -0.272297 5.524960e-01 0.748210 1.027801 0.156409 1.582323 0.291544 0.123790 -1.362702 -1.125050 -0.677704 -0.677704 -0.505290 0.480059 0.530602 1.403618 0.994679 -0.016182 -0.016182 0.980895 -0.287276 -0.167811 -0.613509 -0.981095 -0.016182 -0.641078 0.466275 -0.034561 1.036033 0.718990 1.160093 -1.674913 -1.674913 -0.232138 -0.232138 -1.183267 -0.134736 2.714733 1.098115 0.162684 -0.010011 -0.010011 -0.077171 -1.003008 -0.388981 0.532059 -1.012602 1.170072 0.023568 0.493683 0.440915 2.196648 -0.149127 -0.010011 -1.631426 -1.559470 -1.041385 -1.041385 -0.763154 -1.660768 -0.639466 1.138178 1.022559 -0.273339 -0.273339 1.918607 0.902122 1.181535 2.231742 -0.567204 3.147059 1.253797 1.316424 -1.453617 -0.981506 -0.273339 -0.523847 -2.142514 -1.940180 -0.957418 -0.957418 -1.468069 -1.214603 -0.394123 -0.053080 -0.315040 -0.053080 -0.053080 -0.552288 -1.011954 -0.013539 0.278078 -0.028367 4.054264 0.787171 1.439601 1.815242 3.298038 -0.250786 -0.226073 -1.778065 -1.995542 -0.962528 -0.962528 -1.807721 0.387633 0.255621 0.745953 0.109464 0.255621 0.255621 0.067031 -0.979640 0.656373 0.095320 0.458354 0.943972 0.382918 0.166041 0.844962 1.698329 -0.036693 -0.461019 -1.606699 -1.733997 -0.772191 -0.772191 -0.960781 0.110226 0.661795 0.024201 -0.198450 0.110226 0.110226 -0.122546 0.520107 -0.289535 0.039382 0.439143 0.889507 0.181070 1.102038 2.756745 2.291200 0.110226 -0.218691 -1.559662 -1.590023 -1.883519 -1.883519 -1.600144 -0.313535 1.351034 -1.037499
t = get_one_kinase(target,'MEK1').T
t = t.drop(columns=0)
plot_heatmap(t)

info.source.value_counts()
PSPA    303
KS       87
Name: source, dtype: int64
# check if training dataset has same order with the info
(info.kinase == t5.kinase).sum(), \
(info.kinase == t5_kd.kinase).sum(), \
(info.kinase == esm.kinase).sum(), \
(info.kinase == esm_kd.kinase).sum()
(390, 390, 390, 390)
splits = get_splits(info, stratified='group',nfold=5)
StratifiedKFold(n_splits=5, random_state=123, shuffle=True)
# kinase group in train set: 9
# kinase group in test set: 9
---------------------------
# kinase in train set: 312
---------------------------
# kinase in test set: 78
---------------------------
test set: ['EPHA3' 'FES' 'FLT3' 'FYN' 'EPHB1' 'EPHB3' 'FER' 'EPHB4' 'FLT4' 'FGFR1' 'EPHA5' 'TEK' 'DDR2' 'ZAP70' 'LIMK1' 'ULK3' 'JAK1' 'WEE1' 'TESK1' 'MAP2K3' 'AMPKA2' 'ATM' 'CAMK1D' 'CAMK2D' 'CAMK4' 'CAMKK1'
 'CK1D' 'CK1E' 'DYRK2' 'DYRK4' 'HGK' 'IKKE' 'JNK2' 'JNK3' 'KHS1' 'MAPKAPK5' 'MEK2' 'MSK2' 'NDR1' 'NEK6' 'NEK9' 'NIM1' 'NLK' 'OSR1' 'P38A' 'P38B' 'P90RSK' 'PAK1' 'PERK' 'PKCH' 'PKCI' 'PKN1' 'ROCK2'
 'RSK2' 'SIK' 'STLK3' 'TAK1' 'TSSK1' 'ALPHAK3' 'BMPR2' 'CDK10' 'CDK13' 'CDK14' 'CDKL5' 'GCN2' 'GRK4' 'IRE1' 'KHS2' 'MASTL' 'MLK4' 'MNK1' 'MRCKA' 'PRPK' 'QSK' 'SMMLCK' 'SSTK' 'ULK2' 'VRK1']

Train DL

seed_everything()
num_t5 = len(t5_col)
num_esm = len(esm_col)
num_target = len(target_col)
num_t5,num_esm, num_target
(1024, 1280, 210)
def mlp_t5():
    return MLP_1(num_t5, num_target)

def mlp_esm():
    return MLP_1(num_esm, num_target)

def cnn_t5():
    return CNN1D_2(num_t5, num_target)

def cnn_esm():
    return CNN1D_2(num_esm, num_target)
models = {
    'mlp_t5':    (mlp_t5, t5,    t5_col),
    'mlp_t5_kd': (mlp_t5, t5_kd, t5_col),
    'mlp_esm':   (mlp_esm,esm,   esm_col),
    'mlp_esm_kd':(mlp_esm,esm_kd,esm_col),
    'cnn_t5':    (cnn_t5, t5,    t5_col),
    'cnn_t5_kd': (cnn_t5, t5_kd, t5_col),
    'cnn_esm':   (cnn_esm,esm,   esm_col),
    'cnn_esm_kd':(cnn_esm,esm_kd,esm_col)
}
oofs={}
metrics_list = []

n_epoch=20
lr = 3e-3

for save_name, (model_func, data, feat_col) in models.items():
    
    oof, metrics = train_dl_cv(data,
                           feat_col,
                           target_col, 
                           splits, 
                           model_func, 
                           save = save_name,
                           n_epoch=n_epoch,lr=lr)
    
    oofs[save_name] = oof
    metrics['model'] = save_name
    metrics_list.append(metrics)
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.154047 0.993763 0.080863 0.080229 00:01
1 1.033500 0.957460 0.251623 0.239915 00:01
2 0.908174 0.879915 0.434919 0.403990 00:01
3 0.805384 0.804587 0.560596 0.495304 00:01
4 0.725529 0.720960 0.628532 0.571654 00:01
5 0.656491 0.599209 0.692632 0.614877 00:01
6 0.603124 0.513039 0.724522 0.655832 00:01
7 0.555976 0.479024 0.732275 0.665790 00:01
8 0.513584 0.460103 0.735400 0.682403 00:01
9 0.478237 0.461291 0.735585 0.669326 00:01
10 0.445855 0.438646 0.750032 0.685824 00:01
11 0.415538 0.442491 0.746850 0.685451 00:01
12 0.390254 0.425079 0.758302 0.693570 00:01
13 0.366253 0.424454 0.758709 0.702660 00:01
14 0.344065 0.417625 0.763168 0.705728 00:01
15 0.326288 0.420386 0.761326 0.703843 00:01
16 0.310711 0.422554 0.759938 0.704773 00:01
17 0.297028 0.419107 0.762185 0.707341 00:01
18 0.285352 0.417938 0.762975 0.707281 00:01
19 0.275999 0.417737 0.763116 0.707632 00:01
overall MSE: 0.4177
Average Pearson: 0.7472 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.140956 0.993235 0.083575 0.075205 00:01
1 1.011993 0.958387 0.244458 0.236904 00:01
2 0.889426 0.886061 0.442374 0.413279 00:01
3 0.795835 0.807503 0.563417 0.515726 00:01
4 0.711169 0.701166 0.652063 0.602737 00:01
5 0.645843 0.616948 0.670980 0.613756 00:01
6 0.590385 0.542628 0.694287 0.611596 00:01
7 0.544477 0.493557 0.716135 0.642213 00:01
8 0.505067 0.495106 0.710593 0.648736 00:01
9 0.469207 0.483776 0.718823 0.653112 00:01
10 0.438371 0.454403 0.738648 0.677631 00:01
11 0.411289 0.463022 0.732808 0.662357 00:01
12 0.385714 0.451259 0.740798 0.682107 00:01
13 0.363211 0.442026 0.746981 0.681592 00:01
14 0.343041 0.434914 0.751728 0.687908 00:01
15 0.325796 0.426248 0.757512 0.690509 00:01
16 0.309910 0.423560 0.759250 0.692971 00:01
17 0.296182 0.423638 0.759256 0.694006 00:01
18 0.283400 0.423879 0.759063 0.694628 00:01
19 0.273604 0.423261 0.759445 0.695261 00:01
overall MSE: 0.4233
Average Pearson: 0.7386 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.165929 0.997861 0.050772 0.028566 00:01
1 1.039540 0.966586 0.206035 0.189236 00:01
2 0.914809 0.892644 0.412268 0.377057 00:01
3 0.809839 0.814406 0.555799 0.476264 00:01
4 0.725071 0.712379 0.639749 0.585895 00:01
5 0.655595 0.602220 0.680939 0.629493 00:01
6 0.598713 0.537104 0.715591 0.644765 00:01
7 0.549589 0.476055 0.739973 0.675286 00:01
8 0.510118 0.444510 0.746331 0.681570 00:01
9 0.474679 0.458707 0.738142 0.676377 00:01
10 0.442593 0.429351 0.757148 0.685784 00:01
11 0.414344 0.426939 0.759803 0.687920 00:01
12 0.388826 0.404149 0.773380 0.705384 00:01
13 0.366843 0.406389 0.771577 0.703282 00:01
14 0.346036 0.395607 0.778841 0.715038 00:01
15 0.328788 0.397993 0.777540 0.711512 00:01
16 0.314253 0.392937 0.779935 0.713729 00:01
17 0.301027 0.391074 0.781128 0.715466 00:01
18 0.289494 0.390069 0.781767 0.715914 00:01
19 0.279331 0.389034 0.782352 0.716548 00:01
overall MSE: 0.3890
Average Pearson: 0.7670 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.145138 0.992893 0.085656 0.074035 00:01
1 1.027817 0.959737 0.239721 0.227646 00:01
2 0.905911 0.881654 0.443629 0.424223 00:01
3 0.807086 0.794142 0.573527 0.543761 00:01
4 0.727605 0.693271 0.642865 0.601084 00:01
5 0.662847 0.589507 0.702499 0.640313 00:01
6 0.610458 0.515101 0.726136 0.663075 00:01
7 0.562271 0.469750 0.734906 0.662374 00:01
8 0.520536 0.425143 0.761607 0.686464 00:01
9 0.483968 0.423267 0.763724 0.680789 00:01
10 0.450132 0.416346 0.765058 0.690973 00:01
11 0.420178 0.399086 0.776151 0.698785 00:01
12 0.395010 0.407800 0.770021 0.681984 00:01
13 0.372879 0.396190 0.777995 0.699153 00:01
14 0.352383 0.378501 0.789091 0.709949 00:01
15 0.334448 0.377712 0.789451 0.713670 00:01
16 0.318485 0.381596 0.787125 0.709212 00:01
17 0.304810 0.379858 0.788337 0.708199 00:01
18 0.293324 0.379836 0.788288 0.707384 00:01
19 0.284492 0.377875 0.789289 0.708853 00:01
overall MSE: 0.3779
Average Pearson: 0.7735 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.171297 0.997939 0.050111 0.040568 00:01
1 1.045996 0.964800 0.220317 0.198966 00:01
2 0.917384 0.886729 0.437603 0.402385 00:01
3 0.816893 0.811052 0.554054 0.492507 00:01
4 0.730609 0.707229 0.615462 0.570250 00:01
5 0.663249 0.611400 0.684933 0.605848 00:01
6 0.605722 0.542345 0.697075 0.611762 00:01
7 0.557211 0.482583 0.726528 0.633111 00:01
8 0.516083 0.491525 0.713217 0.636467 00:01
9 0.478804 0.467066 0.731536 0.634731 00:01
10 0.445529 0.466572 0.730373 0.655157 00:01
11 0.416316 0.458398 0.736372 0.637750 00:01
12 0.393119 0.446372 0.744441 0.658355 00:01
13 0.372507 0.438278 0.749862 0.668372 00:01
14 0.352572 0.433500 0.752958 0.657434 00:01
15 0.333567 0.429726 0.755635 0.663901 00:01
16 0.318260 0.423233 0.759670 0.672074 00:01
17 0.304142 0.419488 0.762064 0.673936 00:01
18 0.292499 0.417668 0.763152 0.675356 00:01
19 0.283703 0.418396 0.762670 0.674032 00:01
overall MSE: 0.4184
Average Pearson: 0.7448 
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.128783 0.993710 0.079545 0.087242 00:01
1 1.000408 0.954827 0.252600 0.259849 00:01
2 0.877500 0.872050 0.445186 0.440904 00:01
3 0.781121 0.788291 0.598598 0.556018 00:01
4 0.703877 0.698109 0.673864 0.624578 00:01
5 0.644518 0.605176 0.698570 0.616493 00:01
6 0.594482 0.529415 0.725192 0.667000 00:01
7 0.552536 0.511411 0.711317 0.637322 00:01
8 0.514493 0.471762 0.727841 0.691696 00:01
9 0.485739 0.473458 0.731075 0.673806 00:01
10 0.457696 0.462814 0.733474 0.690381 00:01
11 0.428566 0.436654 0.750662 0.700442 00:01
12 0.405334 0.430235 0.755443 0.706275 00:01
13 0.382945 0.428628 0.755965 0.711911 00:01
14 0.362497 0.399392 0.775167 0.724731 00:01
15 0.344533 0.400168 0.774828 0.728168 00:01
16 0.327960 0.396860 0.776627 0.731183 00:01
17 0.316058 0.395895 0.777330 0.733727 00:01
18 0.302647 0.397020 0.776641 0.732010 00:01
19 0.292897 0.397151 0.776537 0.732272 00:01
overall MSE: 0.3972
Average Pearson: 0.7600 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.110761 0.996697 0.057758 0.075487 00:01
1 0.978502 0.956851 0.282827 0.300056 00:01
2 0.852812 0.873396 0.474011 0.450219 00:01
3 0.753090 0.793904 0.586377 0.521912 00:01
4 0.680767 0.697122 0.648115 0.590710 00:01
5 0.621360 0.626566 0.678537 0.621998 00:01
6 0.573299 0.537844 0.700038 0.619934 00:01
7 0.537447 0.564759 0.671423 0.581094 00:01
8 0.501783 0.530610 0.685135 0.612027 00:01
9 0.471651 0.471819 0.728918 0.666515 00:01
10 0.442774 0.471213 0.728387 0.666116 00:01
11 0.417866 0.444752 0.746593 0.681429 00:01
12 0.394661 0.432775 0.754314 0.699116 00:01
13 0.374938 0.418785 0.764055 0.701494 00:01
14 0.356047 0.409610 0.768769 0.711593 00:01
15 0.340295 0.400383 0.775097 0.714740 00:01
16 0.325422 0.400200 0.774967 0.712936 00:01
17 0.313327 0.401197 0.774065 0.710762 00:01
18 0.301719 0.400604 0.774380 0.711667 00:01
19 0.292295 0.399910 0.774718 0.711924 00:01
overall MSE: 0.3999
Average Pearson: 0.7565 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.131063 0.996462 0.059773 0.041874 00:01
1 1.003610 0.958448 0.260307 0.226585 00:01
2 0.877091 0.879808 0.460443 0.419428 00:01
3 0.776283 0.795005 0.584367 0.507475 00:01
4 0.695550 0.729284 0.658256 0.593127 00:01
5 0.635156 0.610224 0.706382 0.641893 00:01
6 0.587124 0.511825 0.723481 0.670150 00:01
7 0.545906 0.471957 0.748007 0.674919 00:01
8 0.508820 0.440248 0.749761 0.682432 00:01
9 0.477320 0.445300 0.748759 0.692518 00:01
10 0.449105 0.437093 0.750764 0.678468 00:01
11 0.424530 0.416910 0.764988 0.704228 00:01
12 0.401528 0.394517 0.779027 0.720310 00:01
13 0.379942 0.386115 0.783918 0.726077 00:01
14 0.361028 0.385328 0.784033 0.727033 00:01
15 0.345376 0.377323 0.790195 0.730751 00:01
16 0.329762 0.373578 0.791756 0.735098 00:01
17 0.317112 0.370979 0.793291 0.737812 00:01
18 0.304469 0.369603 0.794089 0.738913 00:01
19 0.294648 0.370337 0.793599 0.738885 00:01
overall MSE: 0.3703
Average Pearson: 0.7833 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.111100 0.984469 0.148462 0.118590 00:01
1 0.977842 0.943770 0.310783 0.289653 00:01
2 0.871553 0.864395 0.471983 0.428511 00:01
3 0.776905 0.780677 0.614120 0.545000 00:01
4 0.699287 0.684117 0.686196 0.603511 00:01
5 0.637435 0.604981 0.726525 0.636420 00:01
6 0.587340 0.473186 0.764501 0.693565 00:01
7 0.547684 0.479824 0.727440 0.655271 00:01
8 0.513541 0.451349 0.753496 0.668923 00:01
9 0.479716 0.409409 0.776387 0.686997 00:01
10 0.450685 0.388248 0.785123 0.715279 00:01
11 0.427188 0.400587 0.775251 0.703570 00:01
12 0.405081 0.390215 0.784351 0.704062 00:01
13 0.385486 0.373772 0.794150 0.715276 00:01
14 0.367914 0.361943 0.800702 0.732240 00:01
15 0.352785 0.355219 0.803547 0.735433 00:01
16 0.338327 0.353186 0.806016 0.735004 00:01
17 0.326018 0.348631 0.808581 0.737226 00:01
18 0.313785 0.344942 0.810813 0.740852 00:01
19 0.304783 0.344421 0.811130 0.739999 00:01
overall MSE: 0.3444
Average Pearson: 0.8022 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.138863 0.993372 0.082757 0.072170 00:01
1 1.009768 0.951483 0.274195 0.258487 00:01
2 0.884887 0.871585 0.454884 0.412056 00:01
3 0.790021 0.784916 0.595855 0.538802 00:01
4 0.708776 0.690470 0.686383 0.600683 00:01
5 0.648803 0.601382 0.698563 0.639437 00:01
6 0.599950 0.540712 0.707360 0.610571 00:01
7 0.556581 0.471006 0.733336 0.644909 00:01
8 0.521624 0.452386 0.745504 0.674814 00:01
9 0.488039 0.480375 0.722168 0.629938 00:01
10 0.459280 0.405328 0.774127 0.698979 00:01
11 0.433295 0.422283 0.761112 0.688903 00:01
12 0.409236 0.397547 0.776195 0.698025 00:01
13 0.387612 0.393799 0.779613 0.709538 00:01
14 0.367258 0.389297 0.782372 0.702802 00:01
15 0.349781 0.377078 0.789588 0.718889 00:01
16 0.334924 0.377609 0.789108 0.722318 00:01
17 0.321259 0.375089 0.790811 0.722603 00:01
18 0.309635 0.374322 0.791195 0.721578 00:01
19 0.299376 0.373418 0.791733 0.720455 00:01
overall MSE: 0.3734
Average Pearson: 0.7825 
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.157673 0.998462 0.048070 0.072969 00:01
1 1.037905 0.945200 0.284254 0.297389 00:01
2 0.916484 0.800898 0.532123 0.505515 00:01
3 0.824315 0.674872 0.625628 0.574711 00:01
4 0.748077 0.604842 0.635903 0.567009 00:01
5 0.689846 0.538024 0.685815 0.604766 00:01
6 0.641608 0.501118 0.706454 0.644766 00:01
7 0.597043 0.468152 0.729283 0.674768 00:01
8 0.557734 0.491791 0.713333 0.664789 00:01
9 0.523974 0.472747 0.727143 0.669441 00:01
10 0.492780 0.446169 0.744236 0.669053 00:01
11 0.464903 0.416187 0.765430 0.703634 00:01
12 0.438916 0.415587 0.765864 0.707183 00:01
13 0.414435 0.401195 0.774907 0.714754 00:01
14 0.391351 0.398148 0.776707 0.712254 00:01
15 0.371530 0.393040 0.779694 0.717970 00:01
16 0.354038 0.388590 0.782528 0.724596 00:01
17 0.338742 0.387000 0.783421 0.722924 00:01
18 0.325033 0.386472 0.783630 0.723608 00:01
19 0.315189 0.385637 0.783991 0.725267 00:01
overall MSE: 0.3856
Average Pearson: 0.7633 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.148871 0.993806 0.081569 0.063176 00:01
1 1.024885 0.942724 0.330757 0.302565 00:01
2 0.905095 0.809047 0.543201 0.513134 00:01
3 0.810084 0.704233 0.623344 0.574213 00:01
4 0.733200 0.607658 0.646933 0.594417 00:01
5 0.670995 0.564638 0.659830 0.616129 00:01
6 0.622740 0.537306 0.680612 0.617730 00:01
7 0.581736 0.507870 0.701577 0.640984 00:01
8 0.542354 0.515192 0.696285 0.636736 00:01
9 0.510413 0.531217 0.687404 0.617385 00:01
10 0.481174 0.483432 0.718826 0.661016 00:01
11 0.453522 0.454218 0.738794 0.678051 00:01
12 0.426981 0.463689 0.732395 0.677128 00:01
13 0.403476 0.444609 0.745393 0.690164 00:01
14 0.384952 0.454986 0.738283 0.677540 00:01
15 0.365943 0.444880 0.745090 0.687827 00:01
16 0.348477 0.439288 0.748816 0.690052 00:01
17 0.333922 0.437894 0.749789 0.690127 00:01
18 0.320533 0.436050 0.750996 0.691892 00:01
19 0.311041 0.436738 0.750579 0.691774 00:01
overall MSE: 0.4367
Average Pearson: 0.7310 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.156618 0.996993 0.056145 0.064842 00:01
1 1.034022 0.950679 0.278912 0.284957 00:01
2 0.912812 0.824764 0.525375 0.495985 00:01
3 0.815307 0.702473 0.632620 0.554350 00:01
4 0.741813 0.588826 0.675763 0.599057 00:01
5 0.680163 0.526534 0.691813 0.620772 00:01
6 0.628032 0.499857 0.708549 0.635667 00:01
7 0.581624 0.473593 0.727864 0.664521 00:01
8 0.541849 0.459929 0.734957 0.674673 00:01
9 0.508627 0.450476 0.741458 0.676974 00:01
10 0.478031 0.442089 0.747666 0.674054 00:01
11 0.448859 0.419057 0.762255 0.703343 00:01
12 0.423481 0.432991 0.753345 0.686737 00:01
13 0.401207 0.407876 0.770177 0.708308 00:01
14 0.379782 0.412719 0.766550 0.704251 00:01
15 0.360899 0.407431 0.770311 0.706228 00:01
16 0.345434 0.396722 0.776988 0.716308 00:01
17 0.331564 0.397536 0.776336 0.714301 00:01
18 0.318958 0.398760 0.775513 0.713440 00:01
19 0.308342 0.397521 0.776352 0.714413 00:01
overall MSE: 0.3975
Average Pearson: 0.7645 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.159021 0.994149 0.078490 0.050288 00:01
1 1.037169 0.951734 0.294549 0.267674 00:01
2 0.919539 0.824703 0.531176 0.498259 00:01
3 0.823436 0.710149 0.607041 0.516334 00:01
4 0.744455 0.589703 0.672932 0.584959 00:01
5 0.679118 0.514884 0.701929 0.633019 00:01
6 0.626607 0.509054 0.700702 0.619701 00:01
7 0.588692 0.490848 0.714870 0.639465 00:01
8 0.554123 0.465737 0.733084 0.654866 00:01
9 0.515814 0.469562 0.728755 0.643777 00:01
10 0.482701 0.442584 0.749267 0.670630 00:01
11 0.454473 0.439933 0.752256 0.666517 00:01
12 0.430226 0.439374 0.749822 0.663645 00:01
13 0.406618 0.410587 0.770339 0.691059 00:01
14 0.384051 0.421521 0.763051 0.671704 00:01
15 0.364623 0.416556 0.764846 0.673692 00:01
16 0.347550 0.402176 0.774190 0.686431 00:01
17 0.331825 0.397898 0.777142 0.693273 00:01
18 0.320196 0.398915 0.776409 0.690554 00:01
19 0.309277 0.399001 0.776371 0.690707 00:01
overall MSE: 0.3990
Average Pearson: 0.7607 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.137612 0.994000 0.078814 0.056758 00:01
1 1.023317 0.943398 0.318036 0.285128 00:01
2 0.904741 0.811796 0.544389 0.492103 00:01
3 0.814181 0.683793 0.634993 0.545088 00:01
4 0.736907 0.581590 0.680457 0.597002 00:01
5 0.676377 0.519496 0.695451 0.618372 00:01
6 0.628734 0.512692 0.699184 0.605052 00:01
7 0.585340 0.521013 0.696463 0.626780 00:01
8 0.548112 0.464780 0.731850 0.645645 00:01
9 0.513222 0.485793 0.717376 0.619378 00:01
10 0.480694 0.447566 0.744219 0.658308 00:01
11 0.451958 0.443730 0.745995 0.660425 00:01
12 0.427042 0.457420 0.736674 0.640173 00:01
13 0.404414 0.421630 0.761328 0.679337 00:01
14 0.383327 0.430208 0.755284 0.665053 00:01
15 0.364663 0.428724 0.755843 0.673704 00:01
16 0.347691 0.422182 0.760367 0.676068 00:01
17 0.333251 0.419463 0.762208 0.677029 00:01
18 0.318980 0.419866 0.762052 0.675537 00:01
19 0.310583 0.419268 0.762214 0.676642 00:01
overall MSE: 0.4193
Average Pearson: 0.7586 
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.136482 0.993696 0.080199 0.085662 00:01
1 0.998372 0.923513 0.385841 0.354111 00:01
2 0.872176 0.756011 0.592829 0.549260 00:01
3 0.775923 0.635067 0.660251 0.602803 00:01
4 0.702748 0.526281 0.705283 0.634054 00:01
5 0.647198 0.522564 0.698861 0.627824 00:01
6 0.597791 0.489143 0.718212 0.664088 00:01
7 0.561085 0.517959 0.694381 0.615827 00:01
8 0.527388 0.451737 0.740705 0.679675 00:01
9 0.493225 0.438324 0.749938 0.707114 00:01
10 0.462982 0.433294 0.753074 0.687623 00:01
11 0.436112 0.405655 0.771690 0.721251 00:01
12 0.412442 0.400966 0.774263 0.719371 00:01
13 0.390220 0.404443 0.771898 0.723058 00:01
14 0.372515 0.382372 0.785901 0.733526 00:01
15 0.356121 0.390297 0.781167 0.720299 00:01
16 0.341550 0.382265 0.786418 0.733252 00:01
17 0.330938 0.375861 0.790048 0.739707 00:01
18 0.318752 0.374129 0.791127 0.738543 00:01
19 0.308397 0.374688 0.790768 0.736895 00:01
overall MSE: 0.3747
Average Pearson: 0.7680 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.126146 0.994451 0.074958 0.072940 00:01
1 0.992778 0.921305 0.378173 0.347688 00:01
2 0.870068 0.759877 0.573249 0.527383 00:01
3 0.775533 0.644609 0.644986 0.587326 00:01
4 0.697560 0.581562 0.665445 0.598124 00:01
5 0.643023 0.548444 0.674107 0.601390 00:01
6 0.597180 0.528359 0.687243 0.619392 00:01
7 0.555703 0.480282 0.720927 0.675910 00:01
8 0.521891 0.466492 0.730493 0.675750 00:01
9 0.491663 0.466466 0.731582 0.673130 00:01
10 0.463304 0.476645 0.723676 0.659105 00:01
11 0.438192 0.445982 0.744631 0.683222 00:01
12 0.413640 0.437198 0.750837 0.691914 00:01
13 0.392041 0.427100 0.756948 0.702303 00:01
14 0.372575 0.413516 0.766629 0.709846 00:01
15 0.356531 0.416417 0.764304 0.707668 00:01
16 0.343239 0.412113 0.766760 0.711806 00:01
17 0.328881 0.404121 0.772009 0.718675 00:01
18 0.317669 0.403464 0.772523 0.718520 00:01
19 0.308606 0.403359 0.772559 0.718930 00:01
overall MSE: 0.4034
Average Pearson: 0.7568 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.124082 1.000890 0.025263 0.032386 00:01
1 0.990205 0.933668 0.369440 0.343749 00:01
2 0.874709 0.771003 0.587052 0.541818 00:01
3 0.783245 0.638195 0.652622 0.597745 00:01
4 0.710708 0.558960 0.678355 0.600784 00:01
5 0.654200 0.515192 0.701643 0.643724 00:01
6 0.603523 0.469243 0.728574 0.670986 00:01
7 0.563172 0.514160 0.697029 0.620195 00:01
8 0.527461 0.492941 0.712300 0.636880 00:01
9 0.496621 0.438729 0.749249 0.698523 00:01
10 0.470688 0.431761 0.753850 0.692423 00:01
11 0.445933 0.415621 0.764547 0.712586 00:01
12 0.421443 0.407115 0.771736 0.709854 00:01
13 0.399298 0.400973 0.773970 0.715885 00:01
14 0.378403 0.386034 0.783888 0.725361 00:01
15 0.361343 0.381934 0.786233 0.730782 00:01
16 0.345841 0.379798 0.787542 0.732069 00:01
17 0.331907 0.377464 0.789011 0.731610 00:01
18 0.319104 0.378370 0.788436 0.731743 00:01
19 0.309870 0.378198 0.788546 0.731664 00:01
overall MSE: 0.3782
Average Pearson: 0.7812 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.122446 0.995197 0.070141 0.057839 00:01
1 0.993662 0.926829 0.389817 0.347008 00:01
2 0.873179 0.771662 0.602927 0.548822 00:01
3 0.781082 0.638639 0.680993 0.596084 00:01
4 0.709751 0.527253 0.708673 0.622247 00:01
5 0.653177 0.476999 0.729322 0.640477 00:01
6 0.603732 0.474914 0.724693 0.621398 00:01
7 0.565161 0.436976 0.750389 0.682896 00:01
8 0.533213 0.435934 0.754656 0.661643 00:01
9 0.502031 0.399242 0.778864 0.701386 00:01
10 0.469022 0.387641 0.785175 0.709594 00:01
11 0.442537 0.400429 0.779139 0.702134 00:01
12 0.418022 0.370172 0.794832 0.718561 00:01
13 0.397150 0.372257 0.794841 0.717995 00:01
14 0.378553 0.365091 0.800239 0.720597 00:01
15 0.362266 0.359812 0.803227 0.729589 00:01
16 0.345817 0.355229 0.804561 0.734320 00:01
17 0.331388 0.350866 0.807270 0.733327 00:01
18 0.318344 0.350047 0.807692 0.732951 00:01
19 0.307978 0.350657 0.807438 0.731294 00:01
overall MSE: 0.3507
Average Pearson: 0.7909 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.133101 0.996229 0.062005 0.046389 00:01
1 0.996671 0.924041 0.393522 0.339823 00:01
2 0.878841 0.769787 0.600870 0.544570 00:01
3 0.783613 0.630914 0.678652 0.599448 00:01
4 0.708441 0.512700 0.712528 0.627240 00:01
5 0.648157 0.505964 0.704126 0.623504 00:01
6 0.596509 0.458010 0.736221 0.649767 00:01
7 0.556387 0.475411 0.729549 0.646778 00:01
8 0.524189 0.466897 0.734682 0.663400 00:01
9 0.493333 0.442036 0.747183 0.660340 00:01
10 0.464119 0.417680 0.764113 0.678446 00:01
11 0.437889 0.399755 0.775965 0.692754 00:01
12 0.414478 0.400790 0.774522 0.699172 00:01
13 0.392500 0.392561 0.780793 0.701474 00:01
14 0.374135 0.386335 0.783828 0.704602 00:01
15 0.356031 0.376459 0.789979 0.707439 00:01
16 0.341838 0.377868 0.788760 0.711054 00:01
17 0.329440 0.374104 0.791212 0.712184 00:01
18 0.317193 0.372992 0.791939 0.711894 00:01
19 0.308452 0.372502 0.792183 0.713401 00:01
overall MSE: 0.3725
Average Pearson: 0.7815 
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.292544 0.989465 0.116011 0.109405 00:04
1 1.142734 0.991869 0.100687 0.042590 00:01
2 1.021166 1.054265 0.164518 0.115665 00:01
3 0.946030 0.983256 0.260691 0.208587 00:01
4 0.877899 0.945536 0.289812 0.283952 00:02
5 0.806079 0.700232 0.563017 0.523097 00:01
6 0.728828 0.627072 0.617049 0.557381 00:01
7 0.653791 0.481928 0.721406 0.645876 00:01
8 0.589306 0.447124 0.749204 0.668335 00:01
9 0.527541 0.438720 0.753606 0.682532 00:01
10 0.473683 0.400283 0.776752 0.705523 00:01
11 0.424068 0.399002 0.777605 0.712934 00:01
12 0.379440 0.385126 0.784515 0.718525 00:01
13 0.342999 0.382498 0.787217 0.718554 00:01
14 0.308789 0.375983 0.791154 0.723687 00:01
15 0.279898 0.371299 0.794482 0.727699 00:01
16 0.256017 0.369786 0.795179 0.729493 00:01
17 0.234444 0.368144 0.796001 0.729999 00:02
18 0.216537 0.370098 0.795056 0.730636 00:02
19 0.200367 0.369142 0.795590 0.730623 00:01
overall MSE: 0.3691
Average Pearson: 0.7754 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.280892 0.989775 0.106935 0.080704 00:02
1 1.139460 0.983054 0.131488 0.064454 00:01
2 1.023331 1.085983 0.099590 0.051320 00:01
3 0.932097 1.008756 0.229172 0.224889 00:01
4 0.860198 0.809107 0.436972 0.383236 00:01
5 0.794526 0.802949 0.505577 0.465394 00:02
6 0.734285 0.681683 0.582518 0.517996 00:01
7 0.665784 0.555346 0.682581 0.627427 00:01
8 0.595424 0.507221 0.715518 0.657850 00:01
9 0.533775 0.482111 0.729736 0.668044 00:01
10 0.478819 0.434856 0.753900 0.691042 00:01
11 0.430259 0.428804 0.756737 0.694282 00:01
12 0.386865 0.414727 0.767028 0.707041 00:01
13 0.349853 0.407413 0.770093 0.710540 00:01
14 0.317262 0.402065 0.774094 0.717342 00:01
15 0.286859 0.402339 0.775044 0.721081 00:01
16 0.263531 0.403439 0.774398 0.720476 00:01
17 0.241825 0.403351 0.774802 0.721002 00:01
18 0.224196 0.404154 0.774939 0.722095 00:01
19 0.208126 0.401012 0.776437 0.722986 00:01
overall MSE: 0.4010
Average Pearson: 0.7651 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.268538 0.989308 0.112892 0.063198 00:01
1 1.125541 0.984390 0.130679 0.085495 00:01
2 1.014183 1.182768 0.041443 0.019458 00:01
3 0.935534 0.891649 0.329646 0.284717 00:01
4 0.864271 0.769452 0.480573 0.482503 00:01
5 0.800483 0.686034 0.561784 0.472785 00:01
6 0.734342 0.560399 0.663065 0.587283 00:01
7 0.661612 0.493249 0.711880 0.632056 00:01
8 0.591530 0.471516 0.732291 0.647952 00:01
9 0.531793 0.426530 0.758131 0.686342 00:01
10 0.477233 0.424800 0.759427 0.678865 00:01
11 0.427130 0.401040 0.775090 0.704277 00:01
12 0.383997 0.397809 0.776769 0.701171 00:01
13 0.345138 0.390293 0.781702 0.715485 00:01
14 0.312779 0.387198 0.783686 0.715852 00:01
15 0.283868 0.387039 0.784264 0.718828 00:01
16 0.258474 0.382317 0.787521 0.721553 00:02
17 0.238743 0.381882 0.788048 0.722055 00:01
18 0.220132 0.379602 0.789345 0.722361 00:01
19 0.204240 0.378418 0.789904 0.723349 00:01
overall MSE: 0.3784
Average Pearson: 0.7729 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.285269 0.990208 0.107578 0.077208 00:01
1 1.135616 0.982261 0.135285 0.109125 00:01
2 1.017804 1.258903 0.061325 0.067551 00:01
3 0.948030 1.043126 0.207390 0.235657 00:01
4 0.876326 0.817656 0.427716 0.363078 00:01
5 0.810635 0.750633 0.514241 0.421862 00:01
6 0.740500 0.605633 0.633040 0.538895 00:01
7 0.668496 0.468002 0.734820 0.661240 00:01
8 0.599872 0.444961 0.747589 0.659324 00:01
9 0.536926 0.394913 0.778070 0.700332 00:01
10 0.481401 0.403894 0.772454 0.692345 00:01
11 0.433141 0.387417 0.782803 0.703208 00:01
12 0.388801 0.390385 0.780893 0.699940 00:01
13 0.349964 0.386334 0.783768 0.706491 00:01
14 0.318607 0.395447 0.777858 0.693136 00:01
15 0.288273 0.383656 0.786312 0.710476 00:01
16 0.264929 0.373477 0.792364 0.719627 00:01
17 0.243218 0.373152 0.792222 0.717112 00:01
18 0.226395 0.372036 0.792981 0.717033 00:01
19 0.210004 0.372572 0.792566 0.714659 00:01
overall MSE: 0.3726
Average Pearson: 0.7783 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.284542 0.989482 0.110908 0.076821 00:02
1 1.136575 1.001484 0.083966 0.004165 00:01
2 1.022551 0.992045 0.183526 0.172091 00:01
3 0.947053 0.971159 0.319269 0.245793 00:01
4 0.879423 0.991022 0.268215 0.172019 00:01
5 0.809498 0.758455 0.501788 0.427878 00:01
6 0.738233 0.655159 0.616733 0.535067 00:01
7 0.663848 0.509706 0.711039 0.622114 00:01
8 0.595070 0.457961 0.739392 0.644187 00:01
9 0.528692 0.424382 0.761139 0.671177 00:01
10 0.471552 0.422025 0.761534 0.668902 00:01
11 0.427599 0.416640 0.765545 0.679142 00:01
12 0.382249 0.405983 0.771352 0.685278 00:02
13 0.343336 0.405263 0.773513 0.693766 00:02
14 0.309523 0.391437 0.780910 0.697412 00:01
15 0.283125 0.381287 0.788159 0.704462 00:01
16 0.257358 0.385970 0.785340 0.701128 00:01
17 0.235116 0.385500 0.785613 0.701755 00:01
18 0.216113 0.385400 0.785668 0.702862 00:01
19 0.202255 0.383209 0.787097 0.703337 00:01
overall MSE: 0.3832
Average Pearson: 0.7703 
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.248910 0.990329 0.107553 0.075002 00:01
1 1.091407 1.004232 0.057023 0.063556 00:01
2 0.981395 1.028895 0.110138 0.062971 00:01
3 0.904417 0.934115 0.277484 0.224396 00:01
4 0.842598 0.876274 0.352068 0.285614 00:01
5 0.787378 0.721206 0.530349 0.449411 00:01
6 0.716401 0.627813 0.616593 0.541714 00:02
7 0.648505 0.519202 0.695117 0.639158 00:02
8 0.587389 0.469505 0.737564 0.670411 00:02
9 0.533930 0.404412 0.772227 0.705982 00:02
10 0.485104 0.416608 0.765770 0.705394 00:02
11 0.439701 0.395817 0.780965 0.718095 00:02
12 0.397569 0.375670 0.793369 0.734500 00:01
13 0.362731 0.369370 0.795240 0.737282 00:01
14 0.330319 0.370768 0.796590 0.741612 00:02
15 0.302045 0.368364 0.797711 0.743663 00:01
16 0.276591 0.367423 0.797541 0.740992 00:01
17 0.256490 0.363760 0.800512 0.744347 00:01
18 0.240127 0.365616 0.800209 0.744046 00:01
19 0.226115 0.366132 0.800020 0.744812 00:01
overall MSE: 0.3661
Average Pearson: 0.7832 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.260543 0.989198 0.117010 0.070382 00:02
1 1.092462 0.988899 0.111428 0.067119 00:01
2 0.979237 0.987732 0.183323 0.119536 00:01
3 0.907215 0.909729 0.302536 0.280490 00:01
4 0.841430 0.859976 0.375066 0.350604 00:01
5 0.778112 0.675421 0.570308 0.514938 00:01
6 0.713817 0.634272 0.605147 0.529246 00:02
7 0.651417 0.493535 0.714316 0.642089 00:02
8 0.588797 0.464606 0.738157 0.681146 00:01
9 0.535079 0.411608 0.769504 0.705002 00:01
10 0.484705 0.397191 0.780252 0.713096 00:01
11 0.439167 0.396294 0.778737 0.715007 00:01
12 0.399922 0.378118 0.790435 0.728347 00:02
13 0.365531 0.364318 0.798136 0.732678 00:01
14 0.332979 0.363607 0.798931 0.731076 00:02
15 0.303887 0.360467 0.800383 0.733379 00:01
16 0.279600 0.359879 0.801332 0.738344 00:01
17 0.261387 0.357479 0.803671 0.741484 00:02
18 0.244418 0.358399 0.803504 0.740766 00:01
19 0.229661 0.356755 0.804363 0.741831 00:02
overall MSE: 0.3568
Average Pearson: 0.8002 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.241334 0.987173 0.126982 0.038944 00:02
1 1.087275 0.986407 0.125084 0.033662 00:02
2 0.972466 1.049425 0.117816 0.137235 00:01
3 0.897240 0.852623 0.392091 0.301257 00:01
4 0.835681 0.934227 0.369359 0.343481 00:02
5 0.774235 0.736187 0.515436 0.426457 00:01
6 0.705956 0.580412 0.647782 0.570580 00:01
7 0.640253 0.490460 0.713847 0.633763 00:01
8 0.580089 0.416725 0.766332 0.695887 00:01
9 0.526275 0.393426 0.781002 0.704387 00:01
10 0.481167 0.389264 0.786589 0.711328 00:02
11 0.436207 0.355401 0.806026 0.730975 00:01
12 0.395817 0.350991 0.805989 0.736054 00:01
13 0.358858 0.343960 0.811849 0.745606 00:01
14 0.327075 0.339657 0.814190 0.748141 00:01
15 0.299981 0.340178 0.814317 0.746659 00:01
16 0.274345 0.333071 0.818946 0.753000 00:01
17 0.254738 0.332077 0.820435 0.756039 00:01
18 0.236760 0.331746 0.820646 0.755893 00:01
19 0.221317 0.332671 0.820407 0.756171 00:01
overall MSE: 0.3327
Average Pearson: 0.8122 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.251677 0.986292 0.133228 0.061990 00:02
1 1.102669 1.015790 0.020404 -0.018939 00:01
2 0.999381 0.971351 0.236474 0.214251 00:01
3 0.927511 1.109817 0.222932 0.207917 00:02
4 0.860651 0.992894 0.362856 0.272478 00:01
5 0.796436 0.707508 0.542654 0.493122 00:01
6 0.726586 0.593804 0.638483 0.554444 00:01
7 0.660332 0.448944 0.742450 0.652884 00:02
8 0.595792 0.413435 0.766413 0.671086 00:01
9 0.539051 0.383802 0.785490 0.699669 00:01
10 0.488729 0.358269 0.802580 0.717719 00:01
11 0.442265 0.357663 0.802433 0.719604 00:01
12 0.399860 0.342035 0.811833 0.727329 00:01
13 0.362990 0.338557 0.814197 0.731113 00:02
14 0.333234 0.339501 0.813450 0.726905 00:01
15 0.303844 0.332058 0.818048 0.733222 00:01
16 0.278226 0.323582 0.823165 0.741331 00:01
17 0.258983 0.321725 0.824855 0.743388 00:02
18 0.240836 0.320463 0.825558 0.745061 00:01
19 0.226227 0.321140 0.825398 0.746369 00:01
overall MSE: 0.3211
Average Pearson: 0.8147 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.236935 0.988487 0.122808 0.116170 00:02
1 1.088595 0.995019 0.099203 0.074631 00:01
2 0.978199 1.091740 0.126714 0.104141 00:01
3 0.907331 1.035308 0.227215 0.194727 00:01
4 0.851115 0.803582 0.443475 0.369602 00:01
5 0.781886 0.742443 0.509365 0.444919 00:01
6 0.720206 0.607618 0.638965 0.565104 00:01
7 0.653392 0.471417 0.731905 0.639212 00:01
8 0.594954 0.433168 0.754789 0.674654 00:02
9 0.537510 0.395863 0.781489 0.708912 00:02
10 0.486986 0.383629 0.790200 0.714029 00:01
11 0.442931 0.372998 0.794049 0.714222 00:01
12 0.401149 0.355948 0.803362 0.729252 00:01
13 0.364503 0.351793 0.806130 0.731589 00:02
14 0.332320 0.343401 0.811578 0.742973 00:01
15 0.304907 0.345853 0.810774 0.747145 00:02
16 0.279843 0.342521 0.812941 0.747764 00:01
17 0.257735 0.337479 0.815760 0.748417 00:01
18 0.239465 0.338518 0.815463 0.748004 00:02
19 0.223342 0.339779 0.814977 0.747309 00:02
overall MSE: 0.3398
Average Pearson: 0.8016 
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.302429 0.987325 0.126596 0.101961 00:02
1 1.155154 0.975091 0.165441 0.156144 00:02
2 1.051807 1.047461 0.137457 0.101728 00:02
3 0.978245 0.838732 0.402352 0.362293 00:01
4 0.916060 0.763447 0.493328 0.391600 00:02
5 0.849674 0.650760 0.610215 0.507070 00:01
6 0.779025 0.765222 0.621145 0.574651 00:01
7 0.713487 0.650561 0.639459 0.584059 00:01
8 0.648538 0.513293 0.720456 0.640336 00:01
9 0.588102 0.451876 0.745794 0.665660 00:02
10 0.532481 0.436752 0.752517 0.683612 00:02
11 0.482198 0.419981 0.762859 0.697499 00:01
12 0.435735 0.408149 0.770586 0.706340 00:02
13 0.393729 0.390405 0.781229 0.718713 00:01
14 0.357081 0.388408 0.782511 0.719296 00:02
15 0.324201 0.378048 0.789314 0.726044 00:02
16 0.294940 0.381352 0.787463 0.726808 00:01
17 0.272517 0.382992 0.786585 0.726677 00:01
18 0.252022 0.382954 0.786527 0.727006 00:01
19 0.234367 0.381431 0.787435 0.727977 00:01
overall MSE: 0.3814
Average Pearson: 0.7636 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.288849 0.991512 0.098513 0.104055 00:01
1 1.149817 0.969611 0.178000 0.149233 00:01
2 1.056316 0.957713 0.223003 0.183647 00:02
3 0.983231 0.871047 0.373427 0.280447 00:02
4 0.907145 0.804289 0.452214 0.404478 00:01
5 0.843737 0.788859 0.564525 0.520059 00:01
6 0.769427 0.761436 0.613170 0.541585 00:01
7 0.697985 0.572734 0.686768 0.620936 00:01
8 0.629333 0.531864 0.696246 0.631403 00:01
9 0.568340 0.498049 0.716345 0.667771 00:01
10 0.512161 0.459351 0.739452 0.679541 00:02
11 0.461319 0.447312 0.747641 0.692540 00:02
12 0.415244 0.435592 0.751909 0.693253 00:01
13 0.375535 0.438347 0.751241 0.696197 00:01
14 0.340046 0.433697 0.755796 0.702874 00:01
15 0.309290 0.432975 0.756330 0.705302 00:01
16 0.283417 0.428268 0.759999 0.707145 00:01
17 0.261719 0.426624 0.761300 0.707384 00:01
18 0.241418 0.424188 0.762458 0.709830 00:01
19 0.224227 0.424426 0.762589 0.709572 00:01
overall MSE: 0.4244
Average Pearson: 0.7512 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.294832 0.993058 0.086690 0.041377 00:01
1 1.149183 0.988674 0.108200 0.064975 00:01
2 1.049579 1.063563 0.110334 0.096180 00:01
3 0.991086 0.833912 0.408381 0.332441 00:01
4 0.943465 0.803314 0.443683 0.391172 00:01
5 0.868038 0.660401 0.607326 0.534908 00:01
6 0.800216 0.741996 0.580026 0.476736 00:01
7 0.730816 0.563737 0.688017 0.608828 00:01
8 0.667033 0.567450 0.708758 0.632448 00:01
9 0.602029 0.455588 0.744640 0.669595 00:01
10 0.541773 0.434250 0.755714 0.677287 00:01
11 0.487524 0.423086 0.759761 0.693215 00:01
12 0.438407 0.409683 0.769476 0.694270 00:01
13 0.398067 0.403435 0.773739 0.702185 00:01
14 0.364256 0.392025 0.781198 0.714200 00:02
15 0.330292 0.393080 0.779975 0.711770 00:02
16 0.300850 0.386400 0.784721 0.714298 00:01
17 0.275743 0.387235 0.784316 0.712658 00:01
18 0.256593 0.385274 0.785780 0.715210 00:02
19 0.239255 0.388006 0.784210 0.713320 00:02
overall MSE: 0.3880
Average Pearson: 0.7684 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.297134 0.992432 0.089417 0.040924 00:02
1 1.153744 0.995849 0.087174 0.034802 00:02
2 1.053385 0.965197 0.214082 0.146169 00:01
3 0.996689 0.896478 0.353285 0.348727 00:01
4 0.926985 0.790891 0.459010 0.366767 00:01
5 0.859994 0.847036 0.526804 0.472004 00:01
6 0.789911 0.670244 0.619232 0.534482 00:01
7 0.719859 0.531346 0.698154 0.614017 00:02
8 0.657427 0.504494 0.711225 0.630594 00:02
9 0.594539 0.460375 0.741614 0.657430 00:02
10 0.537270 0.436117 0.754968 0.685517 00:02
11 0.484126 0.435703 0.752113 0.654708 00:01
12 0.437753 0.426184 0.757520 0.675571 00:01
13 0.395919 0.403072 0.773015 0.695596 00:01
14 0.358442 0.392178 0.779654 0.697854 00:01
15 0.324655 0.396436 0.776937 0.692145 00:01
16 0.297128 0.391469 0.780294 0.698397 00:01
17 0.273765 0.384951 0.784569 0.705255 00:01
18 0.253901 0.385762 0.784140 0.703063 00:02
19 0.236064 0.384611 0.784772 0.703431 00:02
overall MSE: 0.3846
Average Pearson: 0.7662 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.280601 0.987249 0.135629 0.125721 00:01
1 1.143126 0.981064 0.138952 0.115609 00:01
2 1.044881 0.970373 0.223964 0.169955 00:01
3 0.975163 0.851138 0.386579 0.332334 00:01
4 0.915974 0.817548 0.429852 0.314103 00:02
5 0.844742 0.658974 0.638312 0.543933 00:02
6 0.774957 0.675945 0.643501 0.548340 00:01
7 0.709393 0.574169 0.696119 0.585268 00:01
8 0.645132 0.530699 0.696703 0.604004 00:02
9 0.583587 0.451727 0.742912 0.655546 00:01
10 0.526324 0.440966 0.751961 0.659735 00:01
11 0.474205 0.421800 0.760671 0.676549 00:01
12 0.426346 0.414305 0.765837 0.685452 00:01
13 0.386355 0.406306 0.770901 0.690389 00:01
14 0.350649 0.387192 0.783118 0.702226 00:01
15 0.319704 0.398768 0.775639 0.694322 00:02
16 0.292609 0.397432 0.776968 0.697457 00:01
17 0.270361 0.393982 0.779288 0.699625 00:01
18 0.249420 0.388777 0.782461 0.703426 00:01
19 0.234135 0.388849 0.782549 0.703486 00:01
overall MSE: 0.3888
Average Pearson: 0.7725 
------fold0------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.253576 0.993299 0.084734 0.056130 00:02
1 1.098991 0.982216 0.134073 0.078020 00:01
2 0.991126 0.968159 0.204686 0.154167 00:01
3 0.916993 0.769684 0.494121 0.431679 00:01
4 0.848817 0.699939 0.551495 0.492341 00:02
5 0.786676 0.684427 0.641190 0.534389 00:01
6 0.720431 0.668424 0.671995 0.569518 00:01
7 0.657140 0.532488 0.724972 0.626365 00:02
8 0.599847 0.503078 0.742054 0.680196 00:01
9 0.544374 0.430222 0.768765 0.704063 00:02
10 0.495027 0.419910 0.764446 0.688815 00:02
11 0.448164 0.383106 0.787739 0.725918 00:01
12 0.407634 0.383452 0.785797 0.722562 00:01
13 0.369311 0.371796 0.795432 0.730201 00:02
14 0.336534 0.356941 0.802795 0.740340 00:01
15 0.307939 0.356954 0.802798 0.739997 00:01
16 0.282923 0.358317 0.802423 0.740345 00:02
17 0.260953 0.358263 0.802944 0.740781 00:02
18 0.243947 0.357304 0.804332 0.742581 00:02
19 0.228440 0.359198 0.803134 0.740646 00:02
overall MSE: 0.3592
Average Pearson: 0.7813 
------fold1------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.229177 0.989660 0.108738 0.043703 00:02
1 1.080249 0.984985 0.125213 0.108477 00:02
2 0.978429 0.947816 0.231414 0.171291 00:01
3 0.911561 0.922546 0.290002 0.256684 00:01
4 0.847492 0.711955 0.548586 0.518456 00:01
5 0.786505 0.700665 0.603755 0.526356 00:02
6 0.726127 0.623342 0.677597 0.608144 00:02
7 0.657878 0.522822 0.721908 0.642809 00:02
8 0.593254 0.483774 0.735289 0.669383 00:02
9 0.538243 0.432575 0.758054 0.692037 00:02
10 0.489276 0.435340 0.757060 0.691530 00:01
11 0.442978 0.402596 0.775390 0.717231 00:02
12 0.401603 0.400804 0.776240 0.714973 00:01
13 0.367163 0.386713 0.785368 0.730425 00:01
14 0.333535 0.377267 0.791090 0.735552 00:02
15 0.307870 0.380115 0.788787 0.735055 00:01
16 0.285180 0.378731 0.791048 0.737706 00:02
17 0.263502 0.377103 0.792220 0.738326 00:01
18 0.246818 0.378105 0.791844 0.739270 00:01
19 0.231383 0.378058 0.792256 0.739782 00:01
overall MSE: 0.3781
Average Pearson: 0.7831 
------fold2------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.236020 0.995248 0.070178 0.027696 00:01
1 1.078264 0.988759 0.110743 0.050422 00:01
2 0.984304 0.938209 0.253295 0.167887 00:01
3 0.937014 0.888574 0.363953 0.332320 00:01
4 0.864709 0.737954 0.516128 0.468583 00:01
5 0.802079 0.694279 0.601614 0.525180 00:01
6 0.731031 0.581466 0.688198 0.585389 00:01
7 0.668890 0.576273 0.708466 0.627421 00:01
8 0.609645 0.487239 0.746917 0.665989 00:01
9 0.552273 0.419803 0.770106 0.700640 00:01
10 0.504205 0.392702 0.791177 0.723144 00:02
11 0.455966 0.380881 0.793029 0.731347 00:01
12 0.413697 0.360351 0.800757 0.738299 00:01
13 0.375634 0.354147 0.805446 0.743756 00:02
14 0.340859 0.349533 0.808628 0.745022 00:02
15 0.310495 0.344345 0.812192 0.750473 00:01
16 0.286112 0.343202 0.812886 0.753854 00:01
17 0.263695 0.341192 0.814375 0.756187 00:01
18 0.244116 0.340667 0.814781 0.757726 00:01
19 0.227210 0.341916 0.814201 0.756914 00:02
overall MSE: 0.3419
Average Pearson: 0.8041 
------fold3------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.222317 0.993610 0.080199 0.032400 00:02
1 1.076854 0.977526 0.150822 0.129489 00:01
2 0.980216 0.998324 0.164397 0.158476 00:02
3 0.913132 0.770909 0.481249 0.440876 00:01
4 0.859254 0.649468 0.593107 0.492686 00:01
5 0.800511 0.686524 0.628884 0.560609 00:01
6 0.739962 0.612573 0.670090 0.540904 00:01
7 0.675889 0.531022 0.705821 0.602978 00:01
8 0.611711 0.439105 0.755904 0.676651 00:01
9 0.552348 0.389951 0.784729 0.703547 00:01
10 0.501550 0.382362 0.786562 0.700800 00:01
11 0.455271 0.363148 0.798155 0.711976 00:01
12 0.414663 0.356388 0.802305 0.718339 00:02
13 0.378637 0.341276 0.811883 0.721803 00:02
14 0.347239 0.334652 0.817324 0.733146 00:02
15 0.318244 0.333288 0.817523 0.737039 00:01
16 0.291708 0.328481 0.819984 0.738902 00:02
17 0.269269 0.324076 0.822952 0.741093 00:02
18 0.251296 0.322984 0.823729 0.742280 00:02
19 0.235073 0.323208 0.823799 0.743069 00:02
overall MSE: 0.3232
Average Pearson: 0.8073 
------fold4------
lr in training is 0.003
epoch train_loss valid_loss pearsonr spearmanr time
0 1.238034 0.995568 0.067444 0.017039 00:02
1 1.087779 0.997393 0.086055 0.001116 00:02
2 0.986789 0.962331 0.221712 0.125929 00:01
3 0.921382 0.781944 0.474640 0.396243 00:02
4 0.856494 0.741954 0.513045 0.422718 00:02
5 0.795871 0.652096 0.633885 0.545384 00:02
6 0.734708 0.623018 0.692585 0.576608 00:02
7 0.667443 0.561336 0.715499 0.607036 00:02
8 0.607193 0.460601 0.746010 0.651354 00:02
9 0.554969 0.463469 0.755858 0.669316 00:01
10 0.504137 0.386735 0.786635 0.709550 00:02
11 0.456302 0.378401 0.790805 0.705523 00:01
12 0.414623 0.366218 0.796153 0.710435 00:01
13 0.375654 0.345754 0.809332 0.732095 00:01
14 0.341691 0.344036 0.809975 0.731792 00:01
15 0.311097 0.343089 0.811159 0.737367 00:01
16 0.286559 0.341745 0.812711 0.738464 00:01
17 0.269187 0.342570 0.812291 0.737386 00:01
18 0.250789 0.338811 0.814486 0.739602 00:01
19 0.235877 0.337893 0.815185 0.740166 00:01
overall MSE: 0.3379
Average Pearson: 0.8071 
CPU times: user 3min 16s, sys: 17min 23s, total: 20min 40s
Wall time: 22min 42s
score = pd.concat(metrics_list)
score.sort_values('mse').head()
fold mse pearson_avg model
3 3 0.321140 0.814740 cnn_t5_kd
3 3 0.323208 0.807320 cnn_esm_kd
2 2 0.332671 0.812157 cnn_t5_kd
4 4 0.337893 0.807076 cnn_esm_kd
4 4 0.339779 0.801619 cnn_t5_kd

Train ML

# Define feature sets and their corresponding column names
feature_sets = {
    't5':(t5,t5_col),
    't5_kd':(t5_kd,t5_col),
    'esm':(esm,esm_col),
    'esm_kd':(esm_kd,esm_col),
}
# Dictionary of ML models
ml_models = {
    'LinearRegression': LinearRegression(),
    'Lasso': Lasso(0.1), # L1 regularization # changing alpha does not change the result
    'Ridge': Ridge(alpha=0.1), # L2 regularization
    'ElasticNet': ElasticNet(0.1), # Combine L1 and L2
    
    # 'SVR':SVR(C=10,gamma=1),
    'DecisionTreeRegressor': DecisionTreeRegressor(), # not very good
    'KNN': KNeighborsRegressor(n_neighbors=3), # compared with others, n=3 gives the best results
    # 'XGBRegressor': XGBRegressor(), #slow without gpu
    # 'RandomForestRegressor': RandomForestRegressor() # slow, use cuml to use gpu
                                      }
metrics_list2 = []
oofs2 = {}

for model_name, model in ml_models.items():
    for feature_name, (data, feat_col) in feature_sets.items():
        
        # get model name for save
        save_name = f'{model_name}_{feature_name}'
        print('------------------',save_name,'------------------')
        
        
        # if want to save model, just remove save_name
        # oof, metrics = train_ml_cv(data, feat_col, target_col, splits,model,save_name)
        
        # train
        oof, metrics = train_ml_cv(data, feat_col, target_col, splits, model)
        
        # save metrics
        metrics['model'] = save_name
        metrics_list2.append(metrics)
        
        # save oof
        oofs2[save_name] = oof
------------------ LinearRegression_t5 ------------------
------ fold: 0 --------
LinearRegression()
overall MSE: 0.8305
Average Pearson: 0.6931 
------ fold: 1 --------
LinearRegression()
overall MSE: 0.6924
Average Pearson: 0.6997 
------ fold: 2 --------
LinearRegression()
overall MSE: 0.7312
Average Pearson: 0.7086 
------ fold: 3 --------
LinearRegression()
overall MSE: 0.7582
Average Pearson: 0.6908 
------ fold: 4 --------
LinearRegression()
overall MSE: 0.7260
Average Pearson: 0.6874 
------------------ LinearRegression_t5_kd ------------------
------ fold: 0 --------
LinearRegression()
overall MSE: 0.8763
Average Pearson: 0.7168 
------ fold: 1 --------
LinearRegression()
overall MSE: 0.6405
Average Pearson: 0.7313 
------ fold: 2 --------
LinearRegression()
overall MSE: 0.7465
Average Pearson: 0.7429 
------ fold: 3 --------
LinearRegression()
overall MSE: 0.6453
Average Pearson: 0.7328 
------ fold: 4 --------
LinearRegression()
overall MSE: 0.7906
Average Pearson: 0.7263 
------------------ LinearRegression_esm ------------------
------ fold: 0 --------
LinearRegression()
overall MSE: 0.6145
Average Pearson: 0.7195 
------ fold: 1 --------
LinearRegression()
overall MSE: 0.6063
Average Pearson: 0.7225 
------ fold: 2 --------
LinearRegression()
overall MSE: 0.5792
Average Pearson: 0.7196 
------ fold: 3 --------
LinearRegression()
overall MSE: 0.6019
Average Pearson: 0.6973 
------ fold: 4 --------
LinearRegression()
overall MSE: 0.6562
Average Pearson: 0.7159 
------------------ LinearRegression_esm_kd ------------------
------ fold: 0 --------
LinearRegression()
overall MSE: 0.6540
Average Pearson: 0.7366 
------ fold: 1 --------
LinearRegression()
overall MSE: 0.5418
Average Pearson: 0.7399 
------ fold: 2 --------
LinearRegression()
overall MSE: 0.6084
Average Pearson: 0.7372 
------ fold: 3 --------
LinearRegression()
overall MSE: 0.5551
Average Pearson: 0.7485 
------ fold: 4 --------
LinearRegression()
overall MSE: 0.6513
Average Pearson: 0.7358 
------------------ Lasso_t5 ------------------
------ fold: 0 --------
Lasso(alpha=0.1)
overall MSE: 0.8621
Average Pearson: 0.3738 
------ fold: 1 --------
Lasso(alpha=0.1)
overall MSE: 0.8716
Average Pearson: 0.3636 
------ fold: 2 --------
Lasso(alpha=0.1)
overall MSE: 0.8705
Average Pearson: 0.3616 
------ fold: 3 --------
Lasso(alpha=0.1)
overall MSE: 0.8703
Average Pearson: 0.3624 
------ fold: 4 --------
Lasso(alpha=0.1)
overall MSE: 0.8719
Average Pearson: 0.3591 
------------------ Lasso_t5_kd ------------------
------ fold: 0 --------
Lasso(alpha=0.1)
overall MSE: 0.8621
Average Pearson: 0.3738 
------ fold: 1 --------
Lasso(alpha=0.1)
overall MSE: 0.8716
Average Pearson: 0.3636 
------ fold: 2 --------
Lasso(alpha=0.1)
overall MSE: 0.8705
Average Pearson: 0.3616 
------ fold: 3 --------
Lasso(alpha=0.1)
overall MSE: 0.8703
Average Pearson: 0.3624 
------ fold: 4 --------
Lasso(alpha=0.1)
overall MSE: 0.8719
Average Pearson: 0.3591 
------------------ Lasso_esm ------------------
------ fold: 0 --------
Lasso(alpha=0.1)
overall MSE: 0.8514
Average Pearson: 0.3859 
------ fold: 1 --------
Lasso(alpha=0.1)
overall MSE: 0.8561
Average Pearson: 0.3811 
------ fold: 2 --------
Lasso(alpha=0.1)
overall MSE: 0.8636
Average Pearson: 0.3707 
------ fold: 3 --------
Lasso(alpha=0.1)
overall MSE: 0.8583
Average Pearson: 0.3770 
------ fold: 4 --------
Lasso(alpha=0.1)
overall MSE: 0.8653
Average Pearson: 0.3712 
------------------ Lasso_esm_kd ------------------
------ fold: 0 --------
Lasso(alpha=0.1)
overall MSE: 0.8415
Average Pearson: 0.3921 
------ fold: 1 --------
Lasso(alpha=0.1)
overall MSE: 0.8535
Average Pearson: 0.3800 
------ fold: 2 --------
Lasso(alpha=0.1)
overall MSE: 0.8494
Average Pearson: 0.3786 
------ fold: 3 --------
Lasso(alpha=0.1)
overall MSE: 0.8508
Average Pearson: 0.3815 
------ fold: 4 --------
Lasso(alpha=0.1)
overall MSE: 0.8478
Average Pearson: 0.3814 
------------------ Ridge_t5 ------------------
------ fold: 0 --------
Ridge(alpha=0.1)
overall MSE: 0.4626
Average Pearson: 0.7288 
------ fold: 1 --------
Ridge(alpha=0.1)
overall MSE: 0.4618
Average Pearson: 0.7237 
------ fold: 2 --------
Ridge(alpha=0.1)
overall MSE: 0.4271
Average Pearson: 0.7514 
------ fold: 3 --------
Ridge(alpha=0.1)
overall MSE: 0.4100
Average Pearson: 0.7575 
------ fold: 4 --------
Ridge(alpha=0.1)
overall MSE: 0.4541
Average Pearson: 0.7337 
------------------ Ridge_t5_kd ------------------
------ fold: 0 --------
Ridge(alpha=0.1)
overall MSE: 0.4440
Average Pearson: 0.7443 
------ fold: 1 --------
Ridge(alpha=0.1)
overall MSE: 0.4270
Average Pearson: 0.7428 
------ fold: 2 --------
Ridge(alpha=0.1)
overall MSE: 0.4021
Average Pearson: 0.7674 
------ fold: 3 --------
Ridge(alpha=0.1)
overall MSE: 0.3715
Average Pearson: 0.7849 
------ fold: 4 --------
Ridge(alpha=0.1)
overall MSE: 0.4028
Average Pearson: 0.7745 
------------------ Ridge_esm ------------------
------ fold: 0 --------
Ridge(alpha=0.1)
overall MSE: 0.4047
Average Pearson: 0.7631 
------ fold: 1 --------
Ridge(alpha=0.1)
overall MSE: 0.4259
Average Pearson: 0.7570 
------ fold: 2 --------
Ridge(alpha=0.1)
overall MSE: 0.4173
Average Pearson: 0.7616 
------ fold: 3 --------
Ridge(alpha=0.1)
overall MSE: 0.4047
Average Pearson: 0.7603 
------ fold: 4 --------
Ridge(alpha=0.1)
overall MSE: 0.4542
Average Pearson: 0.7569 
------------------ Ridge_esm_kd ------------------
------ fold: 0 --------
Ridge(alpha=0.1)
overall MSE: 0.3800
Average Pearson: 0.7851 
------ fold: 1 --------
Ridge(alpha=0.1)
overall MSE: 0.3762
Average Pearson: 0.7857 
------ fold: 2 --------
Ridge(alpha=0.1)
overall MSE: 0.3917
Average Pearson: 0.7885 
------ fold: 3 --------
Ridge(alpha=0.1)
overall MSE: 0.3631
Average Pearson: 0.7959 
------ fold: 4 --------
Ridge(alpha=0.1)
overall MSE: 0.4047
Average Pearson: 0.7898 
------------------ ElasticNet_t5 ------------------
------ fold: 0 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8614
Average Pearson: 0.3747 
------ fold: 1 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8708
Average Pearson: 0.3646 
------ fold: 2 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8698
Average Pearson: 0.3625 
------ fold: 3 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8697
Average Pearson: 0.3632 
------ fold: 4 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8712
Average Pearson: 0.3599 
------------------ ElasticNet_t5_kd ------------------
------ fold: 0 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8618
Average Pearson: 0.3740 
------ fold: 1 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8713
Average Pearson: 0.3639 
------ fold: 2 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8702
Average Pearson: 0.3618 
------ fold: 3 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8701
Average Pearson: 0.3626 
------ fold: 4 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8717
Average Pearson: 0.3593 
------------------ ElasticNet_esm ------------------
------ fold: 0 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8413
Average Pearson: 0.3989 
------ fold: 1 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8468
Average Pearson: 0.3940 
------ fold: 2 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8608
Average Pearson: 0.3753 
------ fold: 3 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8479
Average Pearson: 0.3903 
------ fold: 4 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8588
Average Pearson: 0.3816 
------------------ ElasticNet_esm_kd ------------------
------ fold: 0 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8323
Average Pearson: 0.4075 
------ fold: 1 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8440
Average Pearson: 0.3942 
------ fold: 2 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8382
Average Pearson: 0.3971 
------ fold: 3 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8420
Average Pearson: 0.3934 
------ fold: 4 --------
ElasticNet(alpha=0.1)
overall MSE: 0.8372
Average Pearson: 0.3983 
------------------ DecisionTreeRegressor_t5 ------------------
------ fold: 0 --------
DecisionTreeRegressor()
overall MSE: 0.9956
Average Pearson: 0.5402 
------ fold: 1 --------
DecisionTreeRegressor()
overall MSE: 1.0513
Average Pearson: 0.4965 
------ fold: 2 --------
DecisionTreeRegressor()
overall MSE: 0.9685
Average Pearson: 0.5404 
------ fold: 3 --------
DecisionTreeRegressor()
overall MSE: 1.0204
Average Pearson: 0.5209 
------ fold: 4 --------
DecisionTreeRegressor()
overall MSE: 1.0122
Average Pearson: 0.5464 
------------------ DecisionTreeRegressor_t5_kd ------------------
------ fold: 0 --------
DecisionTreeRegressor()
overall MSE: 0.8075
Average Pearson: 0.6255 
------ fold: 1 --------
DecisionTreeRegressor()
overall MSE: 1.0233
Average Pearson: 0.5172 
------ fold: 2 --------
DecisionTreeRegressor()
overall MSE: 0.9162
Average Pearson: 0.5716 
------ fold: 3 --------
DecisionTreeRegressor()
overall MSE: 0.9597
Average Pearson: 0.5299 
------ fold: 4 --------
DecisionTreeRegressor()
overall MSE: 0.8294
Average Pearson: 0.6155 
------------------ DecisionTreeRegressor_esm ------------------
------ fold: 0 --------
DecisionTreeRegressor()
overall MSE: 1.0721
Average Pearson: 0.5104 
------ fold: 1 --------
DecisionTreeRegressor()
overall MSE: 1.1493
Average Pearson: 0.4569 
------ fold: 2 --------
DecisionTreeRegressor()
overall MSE: 1.0901
Average Pearson: 0.4972 
------ fold: 3 --------
DecisionTreeRegressor()
overall MSE: 1.1164
Average Pearson: 0.4873 
------ fold: 4 --------
DecisionTreeRegressor()
overall MSE: 1.0596
Average Pearson: 0.5265 
------------------ DecisionTreeRegressor_esm_kd ------------------
------ fold: 0 --------
DecisionTreeRegressor()
overall MSE: 0.8191
Average Pearson: 0.6201 
------ fold: 1 --------
DecisionTreeRegressor()
overall MSE: 0.8755
Average Pearson: 0.5809 
------ fold: 2 --------
DecisionTreeRegressor()
overall MSE: 0.8807
Average Pearson: 0.6105 
------ fold: 3 --------
DecisionTreeRegressor()
overall MSE: 0.7413
Average Pearson: 0.6473 
------ fold: 4 --------
DecisionTreeRegressor()
overall MSE: 0.9671
Average Pearson: 0.5756 
------------------ KNN_t5 ------------------
------ fold: 0 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4860
Average Pearson: 0.7090 
------ fold: 1 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4908
Average Pearson: 0.7035 
------ fold: 2 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.5112
Average Pearson: 0.6907 
------ fold: 3 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4822
Average Pearson: 0.7086 
------ fold: 4 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4733
Average Pearson: 0.7173 
------------------ KNN_t5_kd ------------------
------ fold: 0 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4168
Average Pearson: 0.7536 
------ fold: 1 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4312
Average Pearson: 0.7479 
------ fold: 2 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.3915
Average Pearson: 0.7680 
------ fold: 3 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.3866
Average Pearson: 0.7735 
------ fold: 4 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4118
Average Pearson: 0.7578 
------------------ KNN_esm ------------------
------ fold: 0 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.5552
Average Pearson: 0.6650 
------ fold: 1 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.5322
Average Pearson: 0.6739 
------ fold: 2 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.6129
Average Pearson: 0.6181 
------ fold: 3 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.5609
Average Pearson: 0.6450 
------ fold: 4 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.5899
Average Pearson: 0.6469 
------------------ KNN_esm_kd ------------------
------ fold: 0 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4869
Average Pearson: 0.7058 
------ fold: 1 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4821
Average Pearson: 0.7044 
------ fold: 2 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4459
Average Pearson: 0.7379 
------ fold: 3 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4590
Average Pearson: 0.7241 
------ fold: 4 --------
KNeighborsRegressor(n_neighbors=3)
overall MSE: 0.4438
Average Pearson: 0.7325 
score2 = pd.concat(metrics_list2)

Save results

metrics

score2['type'] = 'ML'
score['type']='DL'
scores = pd.concat([score,score2])
scores.sort_values('pearson_avg',ascending=False)
fold mse pearson_avg model type
3 3 0.321140 0.814740 cnn_t5_kd DL
2 2 0.332671 0.812157 cnn_t5_kd DL
3 3 0.323208 0.807320 cnn_esm_kd DL
4 4 0.337893 0.807076 cnn_esm_kd DL
2 2 0.341916 0.804054 cnn_esm_kd DL
... ... ... ... ... ...
2 2 0.870463 0.361619 Lasso_t5 ML
4 4 0.871231 0.359918 ElasticNet_t5 ML
4 4 0.871660 0.359292 ElasticNet_t5_kd ML
4 4 0.871864 0.359087 Lasso_t5 ML
4 4 0.871864 0.359087 Lasso_t5_kd ML

160 rows × 5 columns

scores.to_csv('raw/scores.csv',index=False)

oof

len(oofs2),len(oofs)
(24, 8)
oofs2.keys(),oofs.keys()
(dict_keys(['LinearRegression_t5', 'LinearRegression_t5_kd', 'LinearRegression_esm', 'LinearRegression_esm_kd', 'Lasso_t5', 'Lasso_t5_kd', 'Lasso_esm', 'Lasso_esm_kd', 'Ridge_t5', 'Ridge_t5_kd', 'Ridge_esm', 'Ridge_esm_kd', 'ElasticNet_t5', 'ElasticNet_t5_kd', 'ElasticNet_esm', 'ElasticNet_esm_kd', 'DecisionTreeRegressor_t5', 'DecisionTreeRegressor_t5_kd', 'DecisionTreeRegressor_esm', 'DecisionTreeRegressor_esm_kd', 'KNN_t5', 'KNN_t5_kd', 'KNN_esm', 'KNN_esm_kd']),
 dict_keys(['mlp_t5', 'mlp_t5_kd', 'mlp_esm', 'mlp_esm_kd', 'cnn_t5', 'cnn_t5_kd', 'cnn_esm', 'cnn_esm_kd']))
OOF = {**oofs, **oofs2}
len(OOF)
32
# to save the dictionary
save_pickle('raw/oof.pkl',OOF)
# to load
dd  = load_pickle('raw/oof.pkl')

len(dd)
32