Train

Setup

from katlas.core import *
import pandas as pd
import joblib
# from sklearn import set_config
# set_config(transform_output='pandas')
df = Data.get_ks_unique()
df
site_seq site_source_all substrate_gene sub_site O00141_SGK1 O00238_BMPR1B O00311_CDC7 O00329_PIK3CD O00418_EEF2K O00443_PIK3C2A ... Q9Y2K2_SIK3 Q9Y2U5_MAP3K2 Q9Y3S1_WNK2 Q9Y463_DYRK1B Q9Y4K4_MAP4K5 Q9Y572_RIPK3 Q9Y5S2_CDC42BPB Q9Y6E0_STK24 Q9Y6M4_CSNK1G3 Q9Y6R4_MAP3K4
0 AAAAAAAAAVAAPPTAVGSLsGAEGVPVSsQPLPSQPW___ SIGNOR|human_phosphoproteome|PSP|iPTMNet MAZ P56270_S460 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 AAAAAAASGGAQQRsHHAPMsPGssGGGGQPLARtPQPssP PSP|human_phosphoproteome|EPSD|Sugiyama ARID1A O14497_S363 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 AAAAAAAVtAAstsYYGRDRsPLRRATAPVPTVGEGYGYGH human_phosphoproteome|PSP|EPSD RBM4 Q9BWF3_S309 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
3 AAAAAVSRRRKAEYPRRRRssPsARPPDVPGQQPQAAKsPs human_phosphoproteome|Sugiyama ZFP91 Q96JP5_S83 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4 AAAAGAGKAEELHyPLGERRsDyDREALLGVQEDVDEyVKL Sugiyama RCN2 Q14257_S37 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
29151 ___________________MstVHEILCKLsLEGDHstPPs SIGNOR|human_phosphoproteome|EPSD ANXA2 P07355_S2 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
29152 ___________________MsYRRELEKyRDLDEDEILGAL human_phosphoproteome|PSP|EPSD TMOD1 P28289_S2 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
29153 ___________________MtAKMETtFYDDALNASFLPSE SIGNOR|human_phosphoproteome|EPSD|PSP|GPS6 JUN P05412_T2 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
29154 ___________________MtSSyGHVLERQPALGGRLDsP Sugiyama PRRX1 P54821_T2 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
29155 ___________________MttsQKHRDFVAEPMGEKPVGS SIGNOR|human_phosphoproteome|EPSD|PSP|GPS6 BANF1 O75531_T2 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

29156 rows × 459 columns

onehot_encode??
Signature: onehot_encode(sequences, transform_colname=True, n=20)
Docstring: <no docstring>
Source:   
def onehot_encode(sequences, transform_colname=True, n=20):
    encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=False)
    encoded_array = encoder.fit_transform([list(seq) for seq in sequences])
    colnames = [x[1:] for x in encoder.get_feature_names_out()]
    if transform_colname:
        colnames = [f"{int(item.split('_', 1)[0]) - 20}{item.split('_', 1)[1]}" for item in colnames]
    encoded_df = pd.DataFrame(encoded_array, columns=colnames)
    return encoded_df
File:      ~/katlas/katlas/core.py
Type:      function
X = onehot_encode(df['site_seq'])
X
-20A -20C -20D -20E -20F -20G -20H -20I -20K -20L ... 20R 20S 20T 20V 20W 20Y 20_ 20s 20t 20y
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
29151 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
29152 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29154 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29156 rows × 962 columns

kinase_cols = df.columns[4:] 
data=(df[kinase_cols]>0).astype(int)
(data.sum()>50).value_counts()
True     320
False    135
Name: count, dtype: int64
Y=data.loc[:,data.sum()>50] # filter out kinases with less than 50 known substrates
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
# Wrap XGBClassifier with MultiOutputClassifier
model = MultiOutputClassifier(xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss'))
model.fit(X_train, Y_train)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:23] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:31] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:35] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:50] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:53] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:27] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:31] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:35] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:01] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:27] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:31] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:35] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:01] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:23] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:27] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:57] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:01] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:23] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:27] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:50] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:57] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:01] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:27] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:31] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:35] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:50] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:53] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:31] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:35] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:57] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:01] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:23] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:35] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:50] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:53] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[103], line 7
      5 # Compute SHAP values for each label
      6 for i, estimator in enumerate(model.estimators_):
----> 7     explainer = shap.Explainer(estimator, X_train)
      8     shap_values = explainer(X_test)
      9     if i ==10: break

NameError: name 'shap' is not defined
joblib.dump(model, 'multioutput_xgb_model.pkl')
['multioutput_xgb_model.pkl']
model = joblib.load('multioutput_xgb_model.pkl')
import shap
explainer = shap.TreeExplainer(model.estimators_[46])
shap_values = explainer.shap_values(X)
shap_values.shape
(29156, 962)
shap_df = pd.DataFrame(shap_values,index=X.index,columns=X.columns)
df.columns[df.columns.str.contains('CDK1')]
Index(['O94921_CDK14', 'P06493_CDK1', 'P21127_CDK11B', 'Q00536_CDK16',
       'Q07002_CDK18', 'Q14004_CDK13', 'Q15131_CDK10', 'Q96Q40_CDK15',
       'Q9BWU1_CDK19', 'Q9NYV4_CDK12', 'Q9UQ88_CDK11A'],
      dtype='object')
colname = 'P06493_CDK1'
get_prob??
Signature:
get_prob(
    df: pandas.core.frame.DataFrame,
    col: str,
    aa_order=['P', 'G', 'A', 'C', 'S', 'T', 'V', 'I', 'L', 'M', 'F', 'Y', 'W', 'H', 'K', 'R', 'Q', 'N', 'D', 'E', 's', 't', 'y'],
)
Source:   
def get_prob(df: pd.DataFrame, col: str, aa_order=[i for i in 'PGACSTVILMFYWHKRQNDEsty']):
    """Get the probability matrix of PSSM from phosphorylation site sequences."""
    
    site = check_seq_df(df, col)
    
    site_array = np.array(site.apply(list).tolist())
    seq_len = site_array.shape[1]
    
    position = list(range(-(seq_len // 2), (seq_len // 2)+1)) # add 1 because range do not include the final num
    
    site_df = pd.DataFrame(site_array, columns=position)
    melted = site_df.melt(var_name='Position', value_name='aa')
    
    grouped = melted.groupby(['Position', 'aa']).size().reset_index(name='Count')
    grouped = grouped[grouped.aa.isin(aa_order)].reset_index(drop=True)
    
    pivot_df = grouped.pivot(index='aa', columns='Position', values='Count').fillna(0)
    pssm_df = pivot_df / pivot_df.sum()
    
    pssm_df = pssm_df.reindex(index=aa_order, columns=position, fill_value=0)
    pssm_df = pssm_df.rename(index={'s': 'pS', 't': 'pT', 'y': 'pY'})
    
    return pssm_df
File:      ~/katlas/katlas/core.py
Type:      function
idxs = df.index[df[colname]==1]
flat_pssm = shap_df.iloc[idxs].mean()
flat_pssm_1 = (X*shap_df).mean()
flat_pssm_0 = ((1-X)*shap_df).mean()
pssm_1 = recover_pssm(flat_pssm_1)
pssm_0 = recover_pssm(flat_pssm_0)
from katlas.plot import *
plot_heatmap(pssm_0,figsize=(14,7))

plot_heatmap(pssm_1,figsize=(14,7))

recover_pssm?
Signature: recover_pssm(flat_pssm: pandas.core.series.Series)
Docstring: Recover 2D pssm from flat pssm Series
File:      ~/katlas/katlas/core.py
Type:      function
X.shape
(29156, 962)
shap.force_plot?
Signature:
shap.force_plot(
    base_value,
    shap_values=None,
    features=None,
    feature_names=None,
    out_names=None,
    link='identity',
    plot_cmap='RdBu',
    matplotlib=False,
    show=True,
    figsize=(20, 3),
    ordering_keys=None,
    ordering_keys_time_format=None,
    text_rotation=0,
    contribution_threshold=0.05,
)
Docstring:
Visualize the given SHAP values with an additive force layout.
Parameters
----------
base_value : float or shap.Explanation
    If a float is passed in, this is the reference value that the feature contributions start from.
    For SHAP values, it should be the value of ``explainer.expected_value``.
    However, it is recommended to pass in a SHAP :class:`.Explanation` object instead (``shap_values``
    is not necessary in this case).
shap_values : numpy.array
    Matrix of SHAP values (# features) or (# samples x # features). If this is a
    1D array, then a single force plot will be drawn. If it is a 2D array, then a
    stacked force plot will be drawn.
features : numpy.array
    Matrix of feature values (# features) or (# samples x # features). This provides the values of all the
    features, and should be the same shape as the ``shap_values`` argument.
feature_names : list
    List of feature names (# features).
out_names : str
    The name of the output of the model (plural to support multi-output plotting in the future).
link : "identity" or "logit"
    The transformation used when drawing the tick mark labels. Using "logit" will change log-odds numbers
    into probabilities.
plot_cmap : str or list[str]
    Color map to use. It can be a string (defaults to ``RdBu``) or a list of hex color strings.
matplotlib : bool
    Whether to use the default Javascript output, or the (less developed) matplotlib output.
    Using matplotlib can be helpful in scenarios where rendering Javascript/HTML
    is inconvenient. Defaults to False.
show : bool
    Whether :external+mpl:func:`matplotlib.pyplot.show()` is called before returning.
    Setting this to ``False`` allows the plot
    to be customized further after it has been created.
    Only applicable when ``matplotlib`` is set to True.
figsize :
    Figure size of the matplotlib output.
contribution_threshold : float
    Controls the feature names/values that are displayed on force plot.
    Only features that the magnitude of their shap value is larger than min_perc * (sum of all abs shap values)
    will be displayed.
File:      /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/shap/plots/_force.py
Type:      function
shap.force_plot(explainer.expected_value, shap_values[0],X_train.iloc[0],matplotlib=True)

shap.summary_plot(shap_values, X, plot_type="bar")

shap.summary_plot(shap_values, X)

explainer.expected_value
-3.6888542
explainer = shap.Explainer(model.estimators_[46], X_train)
shap_test = explainer(X_test)
# shap_train = explainer(X_train)
shap_test
.values =
array([[ 0.00206763,  0.        , -0.00956931, ...,  0.00070516,
         0.        ,  0.        ],
       [ 0.00206763,  0.        ,  0.00141108, ...,  0.00027887,
         0.        ,  0.        ],
       [ 0.00206763,  0.        ,  0.00188144, ...,  0.00070516,
         0.        ,  0.        ],
       ...,
       [ 0.00206763,  0.        ,  0.00188144, ...,  0.00070516,
         0.        ,  0.        ],
       [ 0.00581243,  0.        ,  0.00188144, ...,  0.00070516,
         0.        ,  0.        ],
       [ 0.00206763,  0.        ,  0.00188144, ...,  0.00070516,
         0.        ,  0.        ]])

.base_values =
array([-5.57500997, -5.57500997, -5.57500997, ..., -5.57500997,
       -5.57500997, -5.57500997])

.data =
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])
import shap

# Compute SHAP values for each label
for i, estimator in enumerate(model.estimators_):
    explainer = shap.Explainer(estimator, X_train)
    shap_values = explainer(X_test)
    if i ==10: break
shap_df = pd.DataFrame(
    shap_values.values,
    columns=X_test.columns,
    index=X_test.index
)
Y_test.iloc[:,10][Y_test.iloc[:,10]==1]
16979    1
14709    1
2275     1
8769     1
27218    1
        ..
20779    1
960      1
7986     1
2554     1
23184    1
Name: O15111_CHUK, Length: 98, dtype: int64
shap_df
-20A -20C -20D -20E -20F -20G -20H -20I -20K -20L ... 20R 20S 20T 20V 20W 20Y 20_ 20s 20t 20y
16025 -0.001766 0.0 0.0 -0.008262 0.0 0.000000 -0.007991 0.0 0.0 0.015426 ... 0.008585 0.043172 0.005846 -0.008903 0.0 0.0 0.0 0.000000 0.0 -0.012251
15040 -0.010175 0.0 0.0 0.000000 0.0 0.000000 -0.002976 0.0 0.0 -0.278704 ... 0.009266 0.089959 0.004836 -0.045084 0.0 0.0 0.0 0.000000 0.0 -0.010704
19178 -0.001143 0.0 0.0 0.000000 0.0 0.000000 -0.003325 0.0 0.0 0.010434 ... 0.003524 0.075065 0.001692 0.046648 0.0 0.0 0.0 0.000000 0.0 -0.010476
17659 -0.001766 0.0 0.0 0.000000 0.0 0.000000 -0.007991 0.0 0.0 0.015426 ... -0.000838 0.091592 0.005846 -0.010654 0.0 0.0 0.0 0.010562 0.0 -0.010916
16145 -0.010175 0.0 0.0 0.000000 0.0 0.000000 -0.012346 0.0 0.0 0.015426 ... -0.001271 0.083283 0.005846 -0.045084 0.0 0.0 0.0 0.000000 0.0 -0.012832
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
8663 -0.001088 0.0 0.0 0.000000 0.0 0.328290 -0.007991 0.0 0.0 0.011210 ... 0.009266 0.033781 0.005846 -0.011177 0.0 0.0 0.0 0.000000 0.0 -0.012008
24778 -0.001766 0.0 0.0 0.000000 0.0 0.000000 -0.007991 0.0 0.0 0.011116 ... 0.009266 0.083086 0.005846 -0.010364 0.0 0.0 0.0 0.000000 0.0 -0.012143
16483 -0.001766 0.0 0.0 0.000000 0.0 0.000000 -0.007991 0.0 0.0 0.010868 ... -0.003765 0.091999 0.005846 -0.011055 0.0 0.0 0.0 0.000000 0.0 -0.011432
24180 -0.002254 0.0 0.0 0.000000 0.0 0.000000 -0.007991 0.0 0.0 0.015426 ... 0.003901 0.092182 0.005846 0.436673 0.0 0.0 0.0 0.000000 0.0 -0.011381
8200 -0.001766 0.0 0.0 0.000000 0.0 0.021635 -0.007991 0.0 0.0 0.011210 ... -0.000513 0.070115 0.002152 -0.012110 0.0 0.0 0.0 0.000000 0.0 -0.012159

5832 rows × 962 columns

Y_train.iloc[:,10]
22535    0
20205    0
6352     0
5638     0
2075     0
        ..
21575    0
5390     0
860      0
15795    0
23654    0
Name: O15111_CHUK, Length: 23324, dtype: int64
shap_values
.values =
array([[-0.00176575,  0.        ,  0.        , ...,  0.        ,
         0.        , -0.01225108],
       [-0.01017473,  0.        ,  0.        , ...,  0.        ,
         0.        , -0.01070447],
       [-0.00114341,  0.        ,  0.        , ...,  0.        ,
         0.        , -0.01047641],
       ...,
       [-0.00176575,  0.        ,  0.        , ...,  0.        ,
         0.        , -0.01143211],
       [-0.00225384,  0.        ,  0.        , ...,  0.        ,
         0.        , -0.01138087],
       [-0.00176575,  0.        ,  0.        , ...,  0.        ,
         0.        , -0.01215919]])

.base_values =
array([-6.18386969, -6.18386969, -6.18386969, ..., -6.18386969,
       -6.18386969, -6.18386969])

.data =
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])
X_test
-20A -20C -20D -20E -20F -20G -20H -20I -20K -20L ... 20R 20S 20T 20V 20W 20Y 20_ 20s 20t 20y
16025 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
19178 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
17659 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
16145 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
8663 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24778 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16483 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
24180 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
8200 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5832 rows × 962 columns

shap.summary_plot(shap_values, X_test, show=False)
plt.title(f'SHAP Summary for Label {i}')
plt.show()

import xgboost as xgb

# Initialize the classifier
model = xgb.XGBClassifier(objective='binary:logistic', eval_metric='logloss', use_label_encoder=False)

# Fit the model on multi-label data
model.fit(X_train, Y_train)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:33:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
XGBClassifier(base_score=None, booster=None, callbacks=None,
              colsample_bylevel=None, colsample_bynode=None,
              colsample_bytree=None, device=None, early_stopping_rounds=None,
              enable_categorical=False, eval_metric='logloss',
              feature_types=None, feature_weights=None, gamma=None,
              grow_policy=None, importance_type=None,
              interaction_constraints=None, learning_rate=None, max_bin=None,
              max_cat_threshold=None, max_cat_to_onehot=None,
              max_delta_step=None, max_depth=None, max_leaves=None,
              min_child_weight=None, missing=nan, monotone_constraints=None,
              multi_strategy=None, n_estimators=None, n_jobs=None,
              num_parallel_tree=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
for i, estimator in enumerate(model.estimators_):
    # Compute SHAP values for label i
    explainer = shap.Explainer(estimator, X_train)
    shap_values = explainer(X_test)

    # Visualize SHAP values for label i
    shap.plots.beeswarm(shap_values, max_display=10)
    if i ==10: break
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[100], line 1
----> 1 for i, estimator in enumerate(model.estimators_):
      2     # Compute SHAP values for label i
      3     explainer = shap.Explainer(estimator, X_train)
      4     shap_values = explainer(X_test)

AttributeError: 'XGBClassifier' object has no attribute 'estimators_'
import shap

# Create a SHAP explainer
explainer = shap.Explainer(model, X_train)

# Compute SHAP values for the test set
shap_values = explainer(X_test)
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[99], line 1
----> 1 import shap
      3 # Create a SHAP explainer
      4 explainer = shap.Explainer(model, X_train)

ModuleNotFoundError: No module named 'shap'
shap.summary_plot(shap_values, X_test)
shap.dependence_plot("feature_name", shap_values.values, X_test)
shap.force_plot(explainer.expected_value, shap_values.values[0], X_test[0])
from sklearn.metrics import hamming_loss, accuracy_score, f1_score

# Predict on the test set
Y_pred = model.predict(X_test)

# Compute evaluation metrics
print("Hamming Loss:", hamming_loss(Y_test, Y_pred))
print("Subset Accuracy:", accuracy_score(Y_test, Y_pred))
print("F1 Score (Micro):", f1_score(Y_test, Y_pred, average='micro'))
from sklearn.multioutput import MultiOutputClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
base = KNeighborsClassifier(n_neighbors=5,n_jobs=-1)
# base = LogisticRegression(max_iter=1000)
clf = MultiOutputClassifier(base)
clf.fit(X_train, Y_train)
MultiOutputClassifier(estimator=KNeighborsClassifier(n_jobs=-1))
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Y_pred = clf.predict(X_test)
# Y_pred = clf.predict_proba(X_test)
out = pd.DataFrame(Y_pred)
from sklearn.metrics import multilabel_confusion_matrix
Y_pred
array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]])
cm = multilabel_confusion_matrix(Y_test.values, Y_pred)
import seaborn as sns
for i in range(num_classes):
    plt.figure(figsize=(4, 4))
    c_matrix = cm[i]
    plt.imshow(c_matrix, interpolation='nearest', cmap=plt.cm.Blues)
    plt.title(f'Confusion Matrix for {class_names[i]}')
    plt.xticks([0, 1], ['Predicted 0', 'Predicted 1'])
    plt.yticks([0, 1], ['Actual 0', 'Actual 1'])

    for j in range(2):
        for k in range(2):
            plt.text(k, j, format(c_matrix[j, k], 'd'),
                     ha="center", va="center",
                     color="white" if c_matrix[j, k] > c_matrix.max() / 2. else "black")

    plt.tight_layout()
    plt.show()
    if i==20: break

import matplotlib.pyplot as plt
import numpy as np

# Assuming 'cm' is your multilabel confusion matrix
num_classes = cm.shape[0]
class_names = [f'Class {i}' for i in range(num_classes)]  # Replace with actual class names if available

fig, axes = plt.subplots(nrows=1, ncols=num_classes, figsize=(5 * num_classes, 4))

for i in range(num_classes):
    ax = axes[i] if num_classes > 1 else axes
    c_matrix = cm[i]
    im = ax.imshow(c_matrix, interpolation='nearest', cmap=plt.cm.Blues)
    ax.set_title(f'Confusion Matrix for {class_names[i]}')
    ax.set_xticks([0, 1])
    ax.set_yticks([0, 1])
    ax.set_xticklabels(['Predicted 0', 'Predicted 1'])
    ax.set_yticklabels(['Actual 0', 'Actual 1'])

    # Loop over data dimensions and create text annotations.
    for j in range(2):
        for k in range(2):
            ax.text(k, j, format(c_matrix[j, k], 'd'),
                    ha="center", va="center",
                    color="white" if c_matrix[j, k] > c_matrix.max() / 2. else "black")
            break

plt.tight_layout()
plt.show()
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[95], line 28
     23             ax.text(k, j, format(c_matrix[j, k], 'd'),
     24                     ha="center", va="center",
     25                     color="white" if c_matrix[j, k] > c_matrix.max() / 2. else "black")
     26             break
---> 28 plt.tight_layout()
     29 plt.show()

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/pyplot.py:2584, in tight_layout(pad, h_pad, w_pad, rect)
   2576 @_copy_docstring_and_deprecators(Figure.tight_layout)
   2577 def tight_layout(
   2578     *,
   (...)
   2582     rect: tuple[float, float, float, float] | None = None,
   2583 ) -> None:
-> 2584     gcf().tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/figure.py:3540, in Figure.tight_layout(self, pad, h_pad, w_pad, rect)
   3538 previous_engine = self.get_layout_engine()
   3539 self.set_layout_engine(engine)
-> 3540 engine.execute(self)
   3541 if previous_engine is not None and not isinstance(
   3542     previous_engine, (TightLayoutEngine, PlaceHolderLayoutEngine)
   3543 ):
   3544     _api.warn_external('The figure layout has changed to tight')

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/layout_engine.py:181, in TightLayoutEngine.execute(self, fig)
    164 """
    165 Execute tight_layout.
    166 
   (...)
    178 .pyplot.tight_layout
    179 """
    180 info = self._params
--> 181 renderer = fig._get_renderer()
    182 with getattr(renderer, "_draw_disabled", nullcontext)():
    183     kwargs = get_tight_layout_figure(
    184         fig, fig.axes, get_subplotspec_list(fig.axes), renderer,
    185         pad=info['pad'], h_pad=info['h_pad'], w_pad=info['w_pad'],
    186         rect=info['rect'])

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/figure.py:2754, in Figure._get_renderer(self)
   2752 def _get_renderer(self):
   2753     if hasattr(self.canvas, 'get_renderer'):
-> 2754         return self.canvas.get_renderer()
   2755     else:
   2756         return _get_renderer(self)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:398, in FigureCanvasAgg.get_renderer(self)
    396 reuse_renderer = (self._lastKey == key)
    397 if not reuse_renderer:
--> 398     self.renderer = RendererAgg(w, h, self.figure.dpi)
    399     self._lastKey = key
    400 return self.renderer

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:70, in RendererAgg.__init__(self, width, height, dpi)
     68 self.width = width
     69 self.height = height
---> 70 self._renderer = _RendererAgg(int(width), int(height), dpi)
     71 self._filter_renderers = []
     73 self._update_methods()

ValueError: Image size of 160000x400 pixels is too large. It must be less than 2^16 in each direction.
Error in callback <function _draw_all_if_interactive> (for post_execute), with arguments args (),kwargs {}:
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/pyplot.py:197, in _draw_all_if_interactive()
    195 def _draw_all_if_interactive() -> None:
    196     if matplotlib.is_interactive():
--> 197         draw_all()

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/_pylab_helpers.py:132, in Gcf.draw_all(cls, force)
    130 for manager in cls.get_all_fig_managers():
    131     if force or manager.canvas.figure.stale:
--> 132         manager.canvas.draw_idle()

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
   1891 if not self._is_idle_drawing:
   1892     with self._idle_draw_cntx():
-> 1893         self.draw(*args, **kwargs)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:383, in FigureCanvasAgg.draw(self)
    381 def draw(self):
    382     # docstring inherited
--> 383     self.renderer = self.get_renderer()
    384     self.renderer.clear()
    385     # Acquire a lock on the shared font cache.

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:398, in FigureCanvasAgg.get_renderer(self)
    396 reuse_renderer = (self._lastKey == key)
    397 if not reuse_renderer:
--> 398     self.renderer = RendererAgg(w, h, self.figure.dpi)
    399     self._lastKey = key
    400 return self.renderer

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:70, in RendererAgg.__init__(self, width, height, dpi)
     68 self.width = width
     69 self.height = height
---> 70 self._renderer = _RendererAgg(int(width), int(height), dpi)
     71 self._filter_renderers = []
     73 self._update_methods()

ValueError: Image size of 160000x400 pixels is too large. It must be less than 2^16 in each direction.
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/IPython/core/formatters.py:340, in BaseFormatter.__call__(self, obj)
    338     pass
    339 else:
--> 340     return printer(obj)
    341 # Finally look for special method names
    342 method = get_real_method(obj, self.print_method)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/IPython/core/pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)
    149     from matplotlib.backend_bases import FigureCanvasBase
    150     FigureCanvasBase(fig)
--> 152 fig.canvas.print_figure(bytes_io, **kw)
    153 data = bytes_io.getvalue()
    154 if fmt == 'svg':

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:2156, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists, backend, **kwargs)
   2151 layout_engine = self.figure.get_layout_engine()
   2152 if layout_engine is not None or bbox_inches == "tight":
   2153     # we need to trigger a draw before printing to make sure
   2154     # CL works.  "tight" also needs a draw to get the right
   2155     # locations:
-> 2156     renderer = _get_renderer(
   2157         self.figure,
   2158         functools.partial(
   2159             print_method, orientation=orientation)
   2160     )
   2161     # we do this instead of `self.figure.draw_without_rendering`
   2162     # so that we can inject the orientation
   2163     with getattr(renderer, "_draw_disabled", nullcontext)():

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:1642, in _get_renderer(figure, print_method)
   1639     print_method = stack.enter_context(
   1640         figure.canvas._switch_canvas_and_return_print_method(fmt))
   1641 try:
-> 1642     print_method(io.BytesIO())
   1643 except Done as exc:
   1644     renderer, = exc.args

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:2043, in FigureCanvasBase._switch_canvas_and_return_print_method.<locals>.<lambda>(*args, **kwargs)
   2039     optional_kws = {  # Passed by print_figure for other renderers.
   2040         "dpi", "facecolor", "edgecolor", "orientation",
   2041         "bbox_inches_restore"}
   2042     skip = optional_kws - {*inspect.signature(meth).parameters}
-> 2043     print_method = functools.wraps(meth)(lambda *args, **kwargs: meth(
   2044         *args, **{k: v for k, v in kwargs.items() if k not in skip}))
   2045 else:  # Let third-parties do as they see fit.
   2046     print_method = meth

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:497, in FigureCanvasAgg.print_png(self, filename_or_obj, metadata, pil_kwargs)
    450 def print_png(self, filename_or_obj, *, metadata=None, pil_kwargs=None):
    451     """
    452     Write the figure to a PNG file.
    453 
   (...)
    495         *metadata*, including the default 'Software' key.
    496     """
--> 497     self._print_pil(filename_or_obj, "png", pil_kwargs, metadata)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:445, in FigureCanvasAgg._print_pil(self, filename_or_obj, fmt, pil_kwargs, metadata)
    440 def _print_pil(self, filename_or_obj, fmt, pil_kwargs, metadata=None):
    441     """
    442     Draw the canvas, then save it using `.image.imsave` (to which
    443     *pil_kwargs* and *metadata* are forwarded).
    444     """
--> 445     FigureCanvasAgg.draw(self)
    446     mpl.image.imsave(
    447         filename_or_obj, self.buffer_rgba(), format=fmt, origin="upper",
    448         dpi=self.figure.dpi, metadata=metadata, pil_kwargs=pil_kwargs)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:383, in FigureCanvasAgg.draw(self)
    381 def draw(self):
    382     # docstring inherited
--> 383     self.renderer = self.get_renderer()
    384     self.renderer.clear()
    385     # Acquire a lock on the shared font cache.

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:398, in FigureCanvasAgg.get_renderer(self)
    396 reuse_renderer = (self._lastKey == key)
    397 if not reuse_renderer:
--> 398     self.renderer = RendererAgg(w, h, self.figure.dpi)
    399     self._lastKey = key
    400 return self.renderer

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:70, in RendererAgg.__init__(self, width, height, dpi)
     68 self.width = width
     69 self.height = height
---> 70 self._renderer = _RendererAgg(int(width), int(height), dpi)
     71 self._filter_renderers = []
     73 self._update_methods()

ValueError: Image size of 160000x400 pixels is too large. It must be less than 2^16 in each direction.
<Figure size 160000x400 with 320 Axes>
sns.heatmap(cm, annot=False)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[94], line 1
----> 1 sns.heatmap(cm, annot=False)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/seaborn/matrix.py:446, in heatmap(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, xticklabels, yticklabels, mask, ax, **kwargs)
    365 """Plot rectangular data as a color-encoded matrix.
    366 
    367 This is an Axes-level function and will draw the heatmap into the
   (...)
    443 
    444 """
    445 # Initialize the plotter object
--> 446 plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,
    447                       annot_kws, cbar, cbar_kws, xticklabels,
    448                       yticklabels, mask)
    450 # Add the pcolormesh kwargs here
    451 kwargs["linewidths"] = linewidths

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/seaborn/matrix.py:110, in _HeatMapper.__init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask)
    108 else:
    109     plot_data = np.asarray(data)
--> 110     data = pd.DataFrame(plot_data)
    112 # Validate the mask and convert to DataFrame
    113 mask = _matrix_mask(data, mask)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/pandas/core/frame.py:827, in DataFrame.__init__(self, data, index, columns, dtype, copy)
    816         mgr = dict_to_mgr(
    817             # error: Item "ndarray" of "Union[ndarray, Series, Index]" has no
    818             # attribute "name"
   (...)
    824             copy=_copy,
    825         )
    826     else:
--> 827         mgr = ndarray_to_mgr(
    828             data,
    829             index,
    830             columns,
    831             dtype=dtype,
    832             copy=copy,
    833             typ=manager,
    834         )
    836 # For data is list-like, or Iterable (will consume into list)
    837 elif is_list_like(data):

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/pandas/core/internals/construction.py:314, in ndarray_to_mgr(values, index, columns, dtype, copy, typ)
    308     _copy = (
    309         copy_on_sanitize
    310         if (dtype is None or astype_is_view(values.dtype, dtype))
    311         else False
    312     )
    313     values = np.array(values, copy=_copy)
--> 314     values = _ensure_2d(values)
    316 else:
    317     # by definition an array here
    318     # the dtypes will be coerced to a single dtype
    319     values = _prep_ndarraylike(values, copy=copy_on_sanitize)

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/pandas/core/internals/construction.py:592, in _ensure_2d(values)
    590     values = values.reshape((values.shape[0], 1))
    591 elif values.ndim != 2:
--> 592     raise ValueError(f"Must pass 2-d input. shape={values.shape}")
    593 return values

ValueError: Must pass 2-d input. shape=(320, 2, 2)
# Create a heatmap
plt.figure(figsize=(8+4, 6+4))
sns.heatmap(cm, annot=False, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix")
0 1 2 3 4 5 6 7 8 9 ... 317 318 319 320 321 322 323 324 325 326
0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
5827 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
5828 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
5829 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
5830 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
5831 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

5832 rows × 327 columns

from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
y = mlb.fit_transform(train['kinase_gene'])

# Save the list of kinase classes
kinase_classes = mlb.classes_
len(kinase_classes)
452

K-mer

import umap
from collections import Counter
from sklearn.preprocessing import StandardScaler
def extract_kmers(peptides, k):
    """Generate k-mer frequency feature vectors from a list of peptide sequences."""
    all_kmers = []
    feature_vectors = []

    # Collect all k-mers to create a global vocabulary
    for peptide in peptides:
        kmers = [peptide[i:i+k] for i in range(len(peptide) - k + 1)]
        all_kmers.extend(kmers)

    unique_kmers = list(set(all_kmers))  # Unique k-mers as features
    kmer_dict = {kmer: i for i, kmer in enumerate(unique_kmers)}

    # Generate feature vectors
    for peptide in peptides:
        kmers = [peptide[i:i+k] for i in range(len(peptide) - k + 1)]
        kmer_counts = Counter(kmers)
        vector = np.zeros(len(unique_kmers))

        for kmer, count in kmer_counts.items():
            vector[kmer_dict[kmer]] = count

        feature_vectors.append(vector)

    return np.array(feature_vectors), unique_kmers
peptides = df[SEQ_COL].tolist()
k = 1
feature_matrix, kmer_labels = extract_kmers(peptides, k)

# Normalize features
scaler = StandardScaler()
feature_matrix_scaled = scaler.fit_transform(feature_matrix)
feature_matrix_scaled.columns=['kmer1_'+i for i in kmer_labels]
feature_matrix_scaled.head()
kmer1__ kmer1_W kmer1_I kmer1_H kmer1_S kmer1_L kmer1_Q kmer1_V kmer1_t kmer1_E ... kmer1_R kmer1_A kmer1_M kmer1_F kmer1_y kmer1_Y kmer1_C kmer1_P kmer1_N kmer1_T
0 -0.292368 -0.534618 -0.381885 0.185877 0.705791 1.538938 -1.153188 -1.372517 -0.827500 3.041615 ... -0.323779 1.174198 -0.811313 -1.005910 -0.722063 -0.628547 1.630311 -1.163877 -0.330899 -0.183614
1 -0.292368 -0.534618 0.350920 2.264674 -0.385998 0.475219 0.139184 -0.067668 1.667494 0.357542 ... -1.372446 -0.881089 -0.811313 0.732836 0.332195 -0.628547 1.630311 -0.291796 0.437719 0.611965
2 -0.292368 -0.534618 0.350920 2.264674 -0.931893 0.475219 -0.507002 -0.067668 1.667494 0.357542 ... -1.372446 -0.881089 -0.811313 0.732836 0.332195 0.515607 1.630311 0.144245 0.437719 0.611965
3 -0.292368 -0.534618 -0.381885 0.185877 -0.931893 -0.588501 -1.153188 1.237181 -0.827500 0.804887 ... -0.848113 0.660376 -0.811313 0.732836 -0.722063 -0.628547 -0.608818 1.016327 0.437719 0.611965
4 -0.292368 -0.534618 -0.381885 0.185877 -0.931893 -0.588501 -1.153188 1.237181 -0.827500 0.804887 ... -1.372446 1.174198 -0.811313 2.471583 -0.722063 0.515607 -0.608818 0.580286 -0.330899 0.611965

5 rows × 24 columns

One-hot encode

x0_A x0_C x0_D x0_E x0_F x0_G x0_H x0_I x0_K x0_L ... x40_R x40_S x40_T x40_V x40_W x40_Y x40__ x40_s x40_t x40_y
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
29151 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29152 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29153 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29154 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29156 rows × 962 columns

# features= pd.concat([onehot,feature_matrix_scaled],axis=1)

Need to modify non-canonical

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
from sklearn.metrics import classification_report, confusion_matrix
label_encoder = LabelEncoder()

labels =np.array(df['kinase_pspa_small'].fillna('Others'))
y = label_encoder.fit_transform(labels)
onehot_encode(df['site_seq'])
x0_A x0_C x0_D x0_E x0_F x0_G x0_H x0_I x0_K x0_L ... x40_R x40_S x40_T x40_V x40_W x40_Y x40__ x40_s x40_t x40_y
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
29151 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
29152 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29154 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29156 rows × 962 columns

X = onehot_encode(train[SEQ_COL])

colname = X.columns.str[1:].tolist()
colname = [f"{int(item.split('_', 1)[0]) - 20}{item.split('_', 1)[1]}" for item in colname]

X.columns = colname
X.head()
-20A -20C -20D -20E -20F -20G -20H -20I -20K -20L ... 20R 20S 20T 20V 20W 20Y 20_ 20s 20t 20y
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 rows × 962 columns

from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from xgboost import XGBClassifier
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns

def get_train_result_multilabel(X, y, label_names):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    model = OneVsRestClassifier(
        XGBClassifier(
            objective='binary:logistic',
            eval_metric='logloss',
            # use_label_encoder=False,
            tree_method='hist'
        )
    )
    
    print("Training multi-label model...")
    model.fit(X_train, y_train)
    
    print("Predicting...")
    y_pred = model.predict(X_test)

    print("Classification Report:")
    print(classification_report(y_test, y_pred, target_names=label_names, zero_division=0))
    
    return model, (X_train, X_test, y_train, y_test, y_pred)
model, data_split = get_train_result_multilabel(X, y, label_names=mlb.classes_)
Training multi-label model...
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:53] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:57] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:01] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:23] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:35] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 52 is present in all training examples.
  warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:50] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 66 is present in all training examples.
  warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 74 is present in all training examples.
  warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:57] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:01] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 132 is present in all training examples.
  warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:39] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:50] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:53] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:23] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:42] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:49] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:52] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:53] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:56] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:57] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:04] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:08] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:12] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:15] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:18] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:23] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:26] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:27] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:30] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:31] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:46] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:48] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:50] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:51] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:53] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:54] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:55] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:57] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:58] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:59] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:00] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:02] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:03] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:05] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:06] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:07] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:09] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:10] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:11] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:13] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:14] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:16] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:17] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:19] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:20] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:21] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:22] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 259 is present in all training examples.
  warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:24] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:25] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:27] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:28] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 264 is present in all training examples.
  warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:29] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:31] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:32] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:33] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:34] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:36] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:37] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 272 is present in all training examples.
  warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:38] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:40] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:41] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:43] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:44] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:45] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:47] WARNING: /workspace/src/learner.cc:738: 
Parameters: { "use_label_encoder" } are not used.

  bst.update(dtrain, iteration=i, fobj=obj)
def get_train_result(X,y):
    X=X.copy()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,stratify=y, random_state=42)
    num_classes=len(set(y))
    # Convert to XGBoost DMatrix format
    dtrain = xgb.DMatrix(X_train, label=y_train)
    dtest = xgb.DMatrix(X_test, label=y_test)
    
    # Set XGBoost parameters
    params = {
        'objective': 'multi:softmax',  # Multi-class classification
        'num_class': num_classes,
        'eval_metric': 'mlogloss',
        'max_depth': 6,
        'eta': 0.1,
        'tree_method': 'hist'
    }
        
    
    # Train model
    print('training')
    model = xgb.train(params, dtrain, num_boost_round=100)

    print('predict on test')
    # Evaluate accuracy
    y_pred = model.predict(dtest)
    y_pred = np.round(y_pred).astype(int)
    # accuracy = (y_pred == y_test).mean()

    
    fig, ax = plt.subplots(figsize=(10, 6))  # Adjust figure size
    xgb.plot_importance(model, importance_type="weight", max_num_features=30, ax=ax)
    plt.title(f"Top {30} Most Important Features")
    plt.show()

    # Get detailed metrics
    report = classification_report(y_test, 
                                   y_pred, 
                                   target_names = label_encoder.classes_,
                                   digits=4, zero_division=0)
    print(report)
    
    
    # Compute confusion matrix
    cm = confusion_matrix(y_test, y_pred)
    
    # Create a heatmap
    plt.figure(figsize=(8+4, 6+4))
    sns.heatmap(cm, annot=False, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.title("Confusion Matrix")
    
    # plt.savefig('CM.png')
    plt.show()
    return model, (X_train, X_test, y_train, y_test,y_pred)
# X=onehot.copy()
model, data = get_train_result(X,y)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[120], line 1
----> 1 model, data = get_train_result(X,y)

Cell In[118], line 3, in get_train_result(X, y)
      1 def get_train_result(X,y):
      2     X=X.copy()
----> 3     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,stratify=y, random_state=42)
      4     num_classes=len(set(y))
      5     # Convert to XGBoost DMatrix format

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/utils/_param_validation.py:216, in validate_params.<locals>.decorator.<locals>.wrapper(*args, **kwargs)
    210 try:
    211     with config_context(
    212         skip_parameter_validation=(
    213             prefer_skip_nested_validation or global_skip_validation
    214         )
    215     ):
--> 216         return func(*args, **kwargs)
    217 except InvalidParameterError as e:
    218     # When the function is just a wrapper around an estimator, we allow
    219     # the function to delegate validation to the estimator, but we replace
    220     # the name of the estimator by the name of the function in the error
    221     # message to avoid confusion.
    222     msg = re.sub(
    223         r"parameter of \w+ must be",
    224         f"parameter of {func.__qualname__} must be",
    225         str(e),
    226     )

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/model_selection/_split.py:2872, in train_test_split(test_size, train_size, random_state, shuffle, stratify, *arrays)
   2868         CVClass = ShuffleSplit
   2870     cv = CVClass(test_size=n_test, train_size=n_train, random_state=random_state)
-> 2872     train, test = next(cv.split(X=arrays[0], y=stratify))
   2874 train, test = ensure_common_namespace_device(arrays[0], train, test)
   2876 return list(
   2877     chain.from_iterable(
   2878         (_safe_indexing(a, train), _safe_indexing(a, test)) for a in arrays
   2879     )
   2880 )

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/model_selection/_split.py:1909, in BaseShuffleSplit.split(self, X, y, groups)
   1879 """Generate indices to split data into training and test set.
   1880 
   1881 Parameters
   (...)
   1906 to an integer.
   1907 """
   1908 X, y, groups = indexable(X, y, groups)
-> 1909 for train, test in self._iter_indices(X, y, groups):
   1910     yield train, test

File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/model_selection/_split.py:2318, in StratifiedShuffleSplit._iter_indices(self, X, y, groups)
   2316 class_counts = np.bincount(y_indices)
   2317 if np.min(class_counts) < 2:
-> 2318     raise ValueError(
   2319         "The least populated class in y has only 1"
   2320         " member, which is too few. The minimum"
   2321         " number of groups for any class cannot"
   2322         " be less than 2."
   2323     )
   2325 if n_train < n_classes:
   2326     raise ValueError(
   2327         "The train_size = %d should be greater or "
   2328         "equal to the number of classes = %d" % (n_train, n_classes)
   2329     )

ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.
model, data = get_train_result(X,y)
training
predict on test

                                    precision    recall  f1-score   support

                               ABL     0.3103    0.1314    0.1846       137
                               ACK     0.6667    0.0833    0.1481        24
                          AKT/ROCK     0.3057    0.3105    0.3081       190
                         ALPHA/MLK     0.1493    0.0746    0.0995       134
                              AMPK     0.1818    0.0920    0.1221        87
                          AURK/PKA     0.3206    0.5437    0.4034       263
                             CAMK2     0.4000    0.0408    0.0741        49
                             CDK_I     0.5067    0.4824    0.4943       313
                            CDK_II     0.7778    0.1321    0.2258        53
                               CK1     0.2041    0.1923    0.1980       104
                               CK2     0.4405    0.5988    0.5076       167
                              CMGC     0.2500    0.0500    0.0833        40
                         DYRK/HIPK     0.1379    0.0611    0.0847       131
        Discoidin domain receptors     1.0000    0.2727    0.4286        11
                     EGF receptors     0.2667    0.0588    0.0964        68
                        EIF2AK/TLK     0.2262    0.1776    0.1990       107
                  Ephrin receptors     0.6667    0.1359    0.2258       103
                            FAM20C     0.0000    0.0000    0.0000         2
            FGF and VEGF receptors     0.4118    0.0593    0.1037       118
                               GRK     0.2143    0.0577    0.0909        52
                              GSK3     0.3333    0.2222    0.2667        72
                               IKK     0.2238    0.4612    0.3014       232
Insulin and neurotrophin receptors     0.3103    0.1374    0.1905       131
                               JAK     0.3750    0.0316    0.0583        95
                          LATS/NDR     0.2000    0.0484    0.0779        62
                         LKB/CAMKK     0.5714    0.1290    0.2105        31
     LKB/CAMKK_Non-canonical (WEE)     0.0000    0.0000    0.0000         4
                             MAP3K     0.2927    0.1091    0.1589       110
                             MAP4K     0.2433    0.5000    0.3273       236
                              MAPK     0.3871    0.6949    0.4972       390
                          MARK/SIK     0.1954    0.1809    0.1878        94
                         MLCK/DAPK     1.0000    0.0833    0.1538        24
                               NAK     0.0000    0.0000    0.0000         9
                           NEK/ASK     0.2105    0.0825    0.1185        97
              Non-canonical (PDHK)     0.0000    0.0000    0.0000         5
               Non-canonical (WEE)     0.0000    0.0000    0.0000        26
                            Others     0.0870    0.0253    0.0392        79
                             PAK_I     0.2667    0.0426    0.0734        94
                            PAK_II     0.0000    0.0000    0.0000        17
                    PDGF receptors     0.2818    0.5927    0.3820       329
                              PIKK     0.3495    0.7386    0.4745        88
                               PKC     0.2645    0.3133    0.2868       233
                               PLK     0.1579    0.0417    0.0659        72
                      PRKD/MAPKAPK     0.2090    0.2476    0.2267       206
                          RIPK/WNK     0.3333    0.0294    0.0541        68
                           S6K/RSK     0.1379    0.0580    0.0816       138
                               SRC     0.3143    0.5537    0.4010       298
                          SRPK/CLK     1.0000    0.0952    0.1739        21
                       SYK and FAK     0.0000    0.0000    0.0000        28
                     TAM receptors     0.3200    0.0684    0.1127       117
                               TEC     0.0000    0.0000    0.0000        52
                             TGFBR     0.2692    0.3294    0.2963        85
                          ULK/TTBK     0.5556    0.1587    0.2469        63
                          assorted     0.0000    0.0000    0.0000        60
     assorted_Non-canomical (PDHK)     0.0000    0.0000    0.0000         1
     assorted_Non-canonical (PDHK)     0.0000    0.0000    0.0000         4
                        basophilic     0.0000    0.0000    0.0000         8

                          accuracy                         0.3044      5832
                         macro avg     0.2864    0.1672    0.1674      5832
                      weighted avg     0.3034    0.3044    0.2607      5832

gain_scores = model.get_score(importance_type='gain')

gain_pssm = recover_pssm(pd.Series(gain_scores))

plot_logo_heatmap(gain_pssm,figsize=(14,10),include_zero=False)

weight_scores = model.get_score(importance_type='weight')

weight_pssm = recover_pssm(pd.Series(weight_scores))

plot_logo_heatmap(weight_pssm,figsize=(14,10),include_zero=False)

fig, ax = plt.subplots(figsize=(10, 6))  # Adjust figure size
xgb.plot_importance(model, importance_type="weight", max_num_features=30, ax=ax)
plt.title(f"Top {30} Most Important Features")
plt.show()

from sklearn.metrics import classification_report
# Get detailed metrics
report = classification_report(y_test, 
                               y_pred, 
                               target_names = label_encoder.classes_,
                               digits=4, zero_division=0)
print(report)
print(report)
                                    precision    recall  f1-score   support

                               ABL     0.2656    0.5770    0.3638       331
                               ACK     0.2273    0.1087    0.1471        46
                          AKT/ROCK     0.3539    0.3500    0.3520       180
                         ALPHA/MLK     0.1481    0.0984    0.1182       122
                              AMPK     0.2113    0.1442    0.1714       104
                          AURK/PKA     0.3537    0.6268    0.4522       351
                             CAMK2     0.1552    0.0789    0.1047       114
                             CDK_I     0.4790    0.5245    0.5007       326
                            CDK_II     1.0000    0.0192    0.0377        52
                               CK1     0.1905    0.2286    0.2078       140
                               CK2     0.3952    0.6117    0.4802       188
                              CMGC     0.1818    0.0417    0.0678        48
                         DYRK/HIPK     0.2266    0.1593    0.1871       182
        Discoidin domain receptors     0.4000    0.0667    0.1143        30
                     EGF receptors     0.5455    0.0896    0.1538        67
                        EIF2AK/TLK     0.2152    0.2615    0.2361       130
                  Ephrin receptors     0.2316    0.2066    0.2184       213
                            FAM20C     0.0000    0.0000    0.0000         2
            FGF and VEGF receptors     0.0000    0.0000    0.0000       115
                               GRK     0.0909    0.0213    0.0345        47
                              GSK3     0.2179    0.1753    0.1943        97
                               IKK     0.2172    0.4076    0.2834       211
Insulin and neurotrophin receptors     0.3750    0.0600    0.1034        50
                               JAK     1.0000    0.0370    0.0714        27
                          LATS/NDR     0.2857    0.0784    0.1231        51
                         LKB/CAMKK     0.2500    0.2308    0.2400        52
     LKB/CAMKK_Non-canonical (WEE)     0.0000    0.0000    0.0000         4
                             MAP3K     0.1250    0.0256    0.0426        78
                             MAP4K     0.2432    0.4876    0.3245       201
                              MAPK     0.3787    0.5850    0.4598       347
                          MARK/SIK     0.2000    0.0843    0.1186        83
                         MLCK/DAPK     0.3333    0.0357    0.0645        28
                               NAK     0.0000    0.0000    0.0000         8
                           NEK/ASK     0.1250    0.0532    0.0746        94
              Non-canonical (PDHK)     0.0000    0.0000    0.0000         4
               Non-canonical (WEE)     0.0000    0.0000    0.0000        16
                             PAK_I     0.0667    0.0128    0.0215        78
                            PAK_II     0.0000    0.0000    0.0000        17
                    PDGF receptors     0.2174    0.1707    0.1913       205
                              PIKK     0.3696    0.7473    0.4945        91
                               PKC     0.2932    0.3411    0.3153       214
                               PLK     0.1515    0.0575    0.0833        87
                      PRKD/MAPKAPK     0.2767    0.2431    0.2588       181
                          RIPK/WNK     0.2273    0.1031    0.1418        97
                           S6K/RSK     0.2766    0.1066    0.1538       122
                               SRC     0.2587    0.3436    0.2952       259
                          SRPK/CLK     0.6000    0.1304    0.2143        23
                       SYK and FAK     0.7500    0.0833    0.1500        36
                     TAM receptors     0.2000    0.0484    0.0779       124
                               TEC     0.2000    0.0300    0.0522       100
                             TGFBR     0.2324    0.3204    0.2694       103
                          ULK/TTBK     0.0000    0.0000    0.0000        49
                          assorted     0.0000    0.0000    0.0000        62
     assorted_Non-canomical (PDHK)     0.0000    0.0000    0.0000         2
     assorted_Non-canonical (PDHK)     0.0000    0.0000    0.0000         5
                        basophilic     0.0000    0.0000    0.0000        10
                            others     0.0000    0.0000    0.0000       125

                          accuracy                         0.2899      6129
                         macro avg     0.2376    0.1616    0.1538      6129
                      weighted avg     0.2681    0.2899    0.2494      6129
accuracy
0.2899331049110785
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import xgboost as xgb
from sklearn.metrics import confusion_matrix
import seaborn as sns
# Convert test data to DMatrix format
dtest = xgb.DMatrix(X_test)

# Predict class labels
y_pred = model.predict(dtest)

# Convert predictions to integers (if not already)
y_pred = np.round(y_pred).astype(int)




# Compute confusion matrix
cm = confusion_matrix(y_test, y_pred)




# Create a heatmap
plt.figure(figsize=(8+4, 6+4))
sns.heatmap(cm, annot=False, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix")

plt.savefig('CM.png')
plt.show()
# pip install shap
import shap
explainer = shap.TreeExplainer(model)
shap_values = explainer(X_test)
shap.initjs()
# Create SHAP explainer
  1%|                   | 2817/349353 [04:08<508:27]       
shap.summary_plot(shap_values, X_test, feature_names=X.columns.tolist())
y_pred
array([ 7.,  0., 10., ..., 45., 10., 28.], dtype=float32)
accuracy
0.2935225974873552
pspa_small
kinase
AAK1              NAK
ABL1              ABL
ABL2              ABL
TNK2              ACK
ACVR2A          TGFBR
             ...     
YSK1            MAP4K
ZAK             MAP3K
ZAP70     SYK and FAK
EEF2K       ALPHA/MLK
FAM20C         FAM20C
Name: pspa_category_small, Length: 522, dtype: object
from fastcore.utils import L
onehot
-7A -7C -7D -7E -7F -7G -7H -7I -7K -7L -7M -7N -7P -7Q -7R -7S -7T -7V -7W -7Y -7_ -7s -7t -7y -6A -6C -6D -6E -6F -6G -6H -6I -6K -6L -6M -6N -6P -6Q -6R -6S -6T -6V -6W -6Y -6_ -6s -6t -6y -5A -5C -5D -5E -5F -5G -5H -5I -5K -5L -5M -5N -5P -5Q -5R -5S -5T -5V -5W -5Y -5_ -5s -5t -5y -4A -4C -4D -4E -4F -4G -4H -4I -4K -4L -4M -4N -4P -4Q -4R -4S -4T -4V -4W -4Y -4_ -4s -4t -4y -3A -3C -3D -3E -3F -3G -3H -3I -3K -3L -3M -3N -3P -3Q -3R -3S -3T -3V -3W -3Y -3_ -3s -3t -3y -2A -2C -2D -2E -2F -2G -2H -2I -2K -2L -2M -2N -2P -2Q -2R -2S -2T -2V -2W -2Y -2_ -2s -2t -2y -1A -1C -1D -1E -1F -1G -1H -1I -1K -1L -1M -1N -1P -1Q -1R -1S -1T -1V -1W -1Y -1_ -1s -1t -1y 0s 0t 0y 1A 1C 1D 1E 1F 1G 1H 1I 1K 1L 1M 1N 1P 1Q 1R 1S 1T 1V 1W 1Y 1_ 1s 1t 1y 2A 2C 2D 2E 2F 2G 2H 2I 2K 2L 2M 2N 2P 2Q 2R 2S 2T 2V 2W 2Y 2_ 2s 2t 2y 3A 3C 3D 3E 3F 3G 3H 3I 3K 3L 3M 3N 3P 3Q 3R 3S 3T 3V 3W 3Y 3_ 3s 3t 3y 4A 4C 4D 4E 4F 4G 4H 4I 4K 4L 4M 4N 4P 4Q 4R 4S 4T 4V 4W 4Y 4_ 4s 4t 4y 5A 5C 5D 5E 5F 5G 5H 5I 5K 5L 5M 5N 5P 5Q 5R 5S 5T 5V 5W 5Y 5_ 5s 5t 5y 6A 6C 6D 6E 6F 6G 6H 6I 6K 6L 6M 6N 6P 6Q 6R 6S 6T 6V 6W 6Y 6_ 6s 6t 6y 7A 7C 7D 7E 7F 7G 7H 7I 7K 7L 7M 7N 7P 7Q 7R 7S 7T 7V 7W 7Y 7_ 7s 7t 7y
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
3 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
30639 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30640 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30641 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30642 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30643 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30644 rows × 339 columns

# import seaborn as sns

# group_colors = {
#     'AG': '#037f04',
#     'DEsty': '#da143e',
#     'F': '#84380b',
#     'HQN': '#8d2be1',
#     'LMIFWTVC': '#d9a41c',
#     'P': '#000000',
#     'RK': '#0000ff',
#     'ST': '#8d008d',
#     'Y': '#84380b',
#     '_': 'yellow'
# }

# aa_color_map = {}
# for group, base_color in group_colors.items():
#     # Create a light palette (from base_color to white) with as many colors as letters in the group
#     palette = sns.light_palette(base_color, n_colors=8, input="hex",reverse=True)
#     # Assign each letter in the group a progressively lighter color
#     for i, aa in enumerate(sorted(group)):
#         aa_color_map[aa] = palette[i]
# df = Data.get_ks_dataset()
tab20bc = sns.color_palette("tab20", 20) + [sns.color_palette("tab20b", 20)[::4][i] for i in [0,1,3,4]]
sns.color_palette("tab20c", 10)
sns.color_palette("tab20c", 25)
import seaborn as sns
def plot_2d(X: pd.DataFrame, # a dataframe that has first column to be x, and second column to be y
            **kwargs, # arguments for sns.scatterplot
            ):
    "Make 2D plot from a dataframe that has first column to be x, and second column to be y"
    plt.figure(figsize=(7,7))
    sns.scatterplot(data = X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)

def plot_2d_style(embed,no_frame=False, **kwargs):
    plot_2d(embed,**kwargs)
    plt.legend(frameon=False,markerscale=8, bbox_to_anchor=(1, 1), loc='upper left')
    plt.tick_params(axis='both', which='both', length=0)
    if no_frame:
        ax = plt.gca()
        ax.set_frame_on(False)
        plt.xlabel('')
        plt.ylabel('')
    plt.xticks([])
    plt.yticks([])
pca_embed=reduce_feature(onehot,'pca',n=50,seed=None)
onhot_embed=reduce_feature(pca_embed,'umap',complexity=15,seed=None)
len(onehot)
29156
onhot_embed=reduce_feature(onehot,'umap',complexity=15,seed=None)
# pca_embed_onehot=reduce_feature(onehot,'pca',n=100,seed=None)
# pca_embed_kmer = reduce_feature(feature_matrix_scaled,'pca',n=5,seed=None)

# pca_embed=pd.concat([pca_embed_onehot,pca_embed_kmer],axis=1)

onhot_embed=reduce_feature(pca_embed_onehot,'umap',complexity=15,seed=None)
umap_model = umap.UMAP(metric='dice', random_state=42)

# Fit and transform the data
embedding = umap_model.fit_transform(onehot)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../umap/umap_.py:1887: UserWarning: gradient function is not yet implemented for dice distance metric; inverse_transform will be unavailable
  warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../umap/umap_.py:1952: UserWarning: n_jobs value 1 overridden to 1 by setting random_state. Use no seed for parallelism.
  warn(
onhot_embed = pd.DataFrame(embedding)
pca_embed=reduce_feature(features,'pca',n=50,seed=None)
onhot_embed=reduce_feature(pca_embed,'umap',complexity=15,seed=None)
import prince
mca = prince.MCA(
    n_components=2,
    n_iter=3,
    copy=True,
    check_input=True,
    engine='sklearn',
    random_state=42,
    one_hot=False
)
mca = mca.fit_transform(onehot)
mca
0 1
0 -0.099896 -0.122510
1 -0.109294 -0.122680
2 -0.091015 -0.120340
3 -0.097323 -0.133918
4 -0.110189 -0.111004
... ... ...
29151 -0.094846 -0.117303
29152 -0.094179 -0.077234
29153 -0.109504 -0.115057
29154 -0.101956 -0.130661
29155 -0.090492 -0.114562

29156 rows × 2 columns

import altair as alt
alt.data_transformers.enable("vegafusion")
DataTransformerRegistry.enable('vegafusion')
mca.eigenvalues_summary
eigenvalue % of variance % of variance (cumulative)
component
0 0.334 1.49% 1.49%
1 0.292 1.30% 2.79%
center=len(df[SEQ_COL].iloc[0])//2
plot_2d_style(mca,s=1,hue=df[SEQ_COL].str[center])

plot_2d_style(onhot_embed,s=1,hue=df[SEQ_COL].str[center])

plot_2d_style(onhot_embed,s=1,hue=df[SEQ_COL].str[center])

plot_2d_style(onhot_embed,s=1,hue=df[SEQ_COL].str[center])

plot_2d_style(onhot_embed,s=1,hue=df[SEQ_COL].str[center])

hue_order=list('PGACSTVILMFYWHKRQNDEsty_')
plot_2d_style(onhot_embed,s=1,hue=df[SEQ_COL].str[center+1],palette=tab20bc,hue_order=hue_order)

group_hue = df.kinase_group.fillna('Other')
plot_2d_style(onhot_embed,s=1,hue=group_hue,palette=tab20bc)
/tmp/ipykernel_33835/2654063392.py:7: UserWarning: The palette list has more values (24) than needed (9), which may not be intended.
  sns.scatterplot(data = X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)

group_hue = df.kinase_paper.map(group).fillna('Other')
hue_order=list('PGACSTVILMFYWHKRQNDEsty_')
plot_2d_style(onhot_embed,s=1,hue=df[SEQ_COL].str[8],palette=tab20bc,hue_order=hue_order)

plot_2d_style(onhot_embed,s=1,hue=group_hue,palette=tab20bc)
/tmp/ipykernel_7561/2523523824.py:7: UserWarning: The palette list has more values (24) than needed (9), which may not be intended.
  sns.scatterplot(data = X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)

Qlabel=(df[SEQ_COL].str[8]=='Q').replace({True:'1Q',False:'others'})
plot_2d_style(onhot_embed,s=1,hue=Qlabel)

Not very much separation

Physicochemical encoded

aa = Data.get_aa_info().iloc[:-2,:]
feat = get_rdkit_df(aa,'SMILES')
removing columns: {'MaxEStateIndex', 'SlogP_VSA7', 'fr_N_O', 'fr_lactone', 'NumSaturatedHeterocycles', 'Chi2v', 'MaxPartialCharge', 'fr_dihydropyridine', 'SMR_VSA8', 'NumAmideBonds', 'fr_COO2', 'fr_pyridine', 'Chi0', 'fr_term_acetylene', 'fr_halogen', 'EState_VSA11', 'SlogP_VSA9', 'fr_isothiocyan', 'fr_nitrile', 'fr_Ar_COO', 'fr_alkyl_halide', 'fr_oxazole', 'fr_imidazole', 'fr_nitro', 'fr_prisulfonamd', 'ExactMolWt', 'NumRadicalElectrons', 'fr_Ndealkylation1', 'fr_priamide', 'SMR_VSA2', 'PEOE_VSA13', 'fr_Nhpyrrole', 'NumValenceElectrons', 'fr_benzene', 'fr_Ar_OH', 'fr_Imine', 'fr_Ar_NH', 'fr_para_hydroxylation', 'fr_allylic_oxid', 'fr_ester', 'VSA_EState1', 'fr_methoxy', 'Chi2n', 'fr_ketone', 'fr_aldehyde', 'fr_lactam', 'fr_benzodiazepine', 'fr_phos_acid', 'NumBridgeheadAtoms', 'SlogP_VSA12', 'fr_hdrzone', 'fr_urea', 'fr_ArN', 'NumAliphaticRings', 'BCUT2D_MRHI', 'fr_COO', 'fr_thiazole', 'fr_ether', 'fr_Al_OH_noTert', 'PEOE_VSA5', 'NumSaturatedRings', 'fr_Ndealkylation2', 'fr_amidine', 'SlogP_VSA6', 'fr_morpholine', 'fr_C_O_noCOO', 'fr_sulfone', 'fr_bicyclic', 'fr_nitro_arom', 'fr_azo', 'fr_hdrzine', 'fr_barbitur', 'LabuteASA', 'SlogP_VSA10', 'fr_C_S', 'VSA_EState9', 'fr_imide', 'Asphericity', 'MinAbsPartialCharge', 'fr_piperdine', 'fr_ketone_Topliss', 'fr_tetrazole', 'HeavyAtomMolWt', 'fr_oxime', 'fr_amide', 'PMI3', 'fr_azide', 'HeavyAtomCount', 'fr_sulfonamd', 'fr_aniline', 'fr_guanido', 'fr_alkyl_carbamate', 'fr_isocyan', 'fr_HOCCN', 'fr_diazo', 'fr_phos_ester', 'fr_nitroso', 'fr_thiocyan', 'fr_piperzine', 'Eccentricity', 'NumSaturatedCarbocycles', 'fr_furan', 'fr_phenol', 'NumSpiroAtoms', 'fr_thiophene', 'NumAliphaticCarbocycles', 'fr_epoxide', 'fr_quatN', 'fr_aryl_methyl', 'SlogP_VSA11', 'fr_phenol_noOrthoHbond', 'fr_nitro_arom_nonortho'}
plot_cluster(feat, name_list = aa.Name.tolist(), hue = 'aa', method = 'pca')

dist_df,sim_df = get_similarity(feat)
plot_matrix(dist_df,inverse_color=True)

plot_matrix(sim_df)

feat.shape
(23, 116)
def encode_seq(seq, encoder):
    vec = []
    feature_length = len(encoder.iloc[0])  # Get the length of feature vectors

    for aa in seq:
        if aa.upper() in encoder.index:
            vec.extend(encoder.loc[aa.upper()].tolist())
        else:
            vec.extend([0] * feature_length)  # Append zeros if AA is missing
    return vec
check_seq_df(df, SEQ_COL)
0        AEGLRPAsPLGLTQE
1        GGGAGPVsPQHHELT
2        LRGNVVPsPLPtRRt
3        GPMRRSKsPADSANG
4        PERsQEEsPPGSTKR
              ...       
30639    GGGEGNVsQVGRVWP
30640    SSYRALIsAFSRLTR
30641    MDRSKRNsIAGFPPR
30642    FKVRHRAsGQVMALK
30643    YEKDGDEsSPILTsF
Name: substrate, Length: 30644, dtype: object
encoded = df['substrate'].progress_apply(lambda x: encode_seq(x,feat))
encoded = encoded.apply(pd.Series)
get_train_result(encoded)
training
predict on test
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[22], line 1
----> 1 get_train_result(encoded)

Cell In[13], line 31, in get_train_result(X)
     27 y_pred = np.round(y_pred).astype(int)
     28 # accuracy = (y_pred == y_test).mean()
---> 31 fig, ax = plt.subplots(figsize=(10, 6))  # Adjust figure size
     32 xgb.plot_importance(model, importance_type="weight", max_num_features=30, ax=ax)
     33 plt.title(f"Top {30} Most Important Features")

NameError: name 'plt' is not defined
encoded
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 ... 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
0 -1.573701 1.193554 0.430590 -0.375462 -0.086117 -1.439770 0.228166 -0.308911 1.656688 0.103007 -0.780051 -0.526903 1.203883 -1.415519 1.465101 -1.347549 1.162418 0.678178 -1.660842 0.058766 -0.928528 -1.372879 -1.406169 -1.434358 -1.395786 -1.364454 -1.371840 -1.490293 -1.312462 -1.397762 0.661861 -0.443256 -1.488584 -1.704924 -1.164169 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 -0.495561 -0.290532 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 -0.458430 -0.241607 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 -0.626017 -0.285797 -0.779939 -0.748232 -0.483822 0.342808 -0.393932 -0.462400 0.572190 0.349099 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.492588 -0.556890 -0.082356 -1.373751 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.248334 -1.009130 1.627587 1.033123 -1.454953 1.869310 0.564352 -0.990362 -0.196363 -1.144174 0.263960 -0.056770 -0.409990 0.000656 0.028134 -0.199915 -1.248978 -1.218664 -0.661636 -0.526379 -0.271923 0.069844 0.109885 -0.172745 0.256753 -0.437180 -0.085041 0.534017 -0.174262 -0.109797 -0.229347 0.015683 -0.111461 -0.350344 -0.210248 -0.401559 -0.290374 -0.463418 -0.547747 -0.348088 0.224335 0.361706 0.487383 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -0.288416 0.677296 -0.694405 0.858350 0.487224 -0.432331 -0.495561 0.606766 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 0.732822 -0.213201 0.556288 0.561766 1.556719 1.830379 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.899668 1.540314 -0.410105 -2.063646 -0.509368 -0.662030 -0.522169 0.037557 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 0.799076 -0.362143 0.413793 -0.556890 -0.278572 -0.274281 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.402920 -0.005825 -0.734232 1.563723 0.183675 0.200628 -0.163011 -0.363060 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.66116 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 0.183853 -0.040705 0.471495 0.845016 -0.055272 -0.395340 0.229561 -0.309671 0.042430 -0.172341 -0.582692 -0.526883 -0.970017 0.047138 -0.616358 0.207388 0.112309 0.157398 -0.722995 0.556356 -0.560003 0.257622 0.112980 -0.367147 0.213799 -0.093517 -0.101010 -0.299173 0.233383 0.015376 0.661861 -0.397483 -0.007674 -0.020725 0.580397 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 0.466515 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 1.732827 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 1.955677 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 1.722814 -0.611041 -0.435773 -0.440926 1.075912 -0.769976 -0.626017 -0.285797 -0.692565 -0.628416 -0.314340 1.137342 -0.379254 0.028423 2.481339 1.127953 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.55689 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.124128 -0.559184 1.300123 0.280635 -0.473019 -0.410698 1.935219 1.932746 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 ... -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 0.183853 -0.040705 0.471495 0.845016 -0.055272 -0.395340 0.229561 -0.309671 0.042430 -0.172341 -0.582692 -0.526883 -0.970017 0.047138 -0.616358 0.207388 0.112309 0.157398 -0.722995 0.556356 -0.560003 0.257622 0.112980 -0.367147 0.213799 -0.093517 -0.101010 -0.299173 0.233383 0.015376 0.661861 -0.397483 -0.007674 -0.020725 0.580397 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 0.466515 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 1.732827 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 1.955677 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 1.722814 -0.611041 -0.435773 -0.440926 1.075912 -0.769976 -0.626017 -0.285797 -0.692565 -0.628416 -0.314340 1.137342 -0.379254 0.028423 2.481339 1.127953 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.556890 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.124128 -0.559184 1.300123 0.280635 -0.473019 -0.410698 1.935219 1.932746 -0.649584 2.010995 0.251582 -0.617142 0.943337 -0.694539 0.242444 -0.316691 0.445994 -0.103504 -0.928071 -0.526259 -0.043918 0.556229 -0.562001 -0.523909 -1.453514 -1.038963 -0.702544 0.833573 -0.648508 -0.641610 -0.724841 -0.737085 -0.712697 -0.825083 -0.563530 -0.732682 -0.788433 -0.918720 0.570570 -0.418096 -0.521056 -0.836672 -1.023990 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 1.021053 0.109427 -0.882977 -0.432331 -0.495561 0.634977 -0.695145 -0.511968 -0.308607 -0.482124 0.800756 -0.884527 -0.458430 -0.241607 -0.213201 -0.131058 0.586510 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.733998 1.616607 -0.450977 -0.081738 -0.543976 -1.334746 0.505208 0.738526 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.614352 -0.556890 -0.890879 -0.783861 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.445444 -0.776063 1.113066 -1.254281 -0.843553 -0.133065 0.327619 -0.289030 0.152079 -1.150286 0.309664 -0.331836 -0.409990 -0.023766 0.229566 -0.309674 -0.764700 -0.723037 -0.306389 -0.526878 -0.317935 -0.018651 0.048713 -0.220755 0.095997 0.257488 -0.085041 0.534017 -0.163183 -0.016913 -0.142807 0.015683 -0.036322 -0.291014 -0.146932 -0.342215 -0.242671 -0.419810 -0.547747 -0.348088 0.224335 0.361706 0.487383 0.553168 -0.113045 -0.213201 3.240370 -0.521596 1.050911 -0.458413 -0.308393 -0.647398 -0.288416 0.677296 -0.694405 0.060693 0.472964 -0.432331 1.374052 0.606766 -0.695145 -0.511968 -0.308607 1.482744 -0.227779 0.433147 -0.458430 0.732822 -0.213201 0.789430 0.550350 1.556719 1.830379 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.624142 -0.285797 0.942571 -0.652401 1.722280 -0.979698 -0.481186 -0.352687 -0.522169 0.037557 0.963863 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 0.799076 1.720179 0.413793 -0.556890 -1.036744 -0.121221 -0.308607 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 1.942572 -0.213201 -0.213201 -0.213201 0.049549 -0.111180 -0.130691 1.036214 0.115020 -0.279508 1.257136 0.905462 -0.196363 -1.144174 0.263960 -0.056770 -0.409990 0.000656 0.028134 -0.199915 -1.248978 -1.218664 -0.661636 -0.526379 -0.271923 0.069844 0.109885 -0.172745 0.256753 -0.437180 -0.085041 0.534017 -0.174262 -0.109797 -0.229347 0.015683 -0.111461 -0.350344 -0.210248 -0.401559 -0.290374 -0.463418 -0.547747 -0.348088 0.224335 0.361706 0.487383 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -0.288416 0.677296 -0.694405 0.858350 0.487224 -0.432331 -0.495561 0.606766 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 0.732822 -0.213201 0.556288 0.561766 1.556719 1.830379 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.899668 1.540314 -0.410105 -2.063646 -0.509368 -0.662030 -0.522169 0.037557 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 0.799076 -0.362143 0.413793 -0.556890 -0.278572 -0.274281 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.402920 -0.005825 -0.734232 1.563723 0.183675 0.200628 -0.163011 -0.363060
1 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.66116 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.661160 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.66116 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -1.573701 1.193554 0.430590 -0.375462 -0.086117 -1.439770 0.228166 -0.308911 1.656688 0.103007 -0.780051 -0.526903 1.203883 -1.415519 1.465101 -1.347549 1.162418 0.678178 -1.660842 0.058766 -0.928528 -1.372879 -1.406169 -1.434358 -1.395786 -1.364454 -1.371840 -1.490293 -1.312462 -1.397762 0.661861 -0.443256 -1.488584 -1.704924 -1.164169 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 -0.495561 -0.290532 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 -0.458430 -0.241607 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 -0.626017 -0.285797 -0.779939 -0.748232 -0.483822 0.342808 -0.393932 -0.462400 0.572190 0.349099 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.492588 -0.55689 -0.082356 -1.373751 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.248334 -1.009130 1.627587 1.033123 -1.454953 1.869310 0.564352 -0.990362 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 ... 0.040161 0.509544 -0.213201 -0.458831 3.240370 1.397391 -0.213201 0.331133 0.163663 0.301852 2.581989 -0.036322 -0.362143 -0.839117 1.272892 -0.150798 0.258170 -0.308607 -0.308607 4.176529 -0.458831 4.690416 1.543487 -0.291386 -0.213201 -0.213201 -0.213201 0.457146 -0.324878 0.638071 -0.375321 -0.264098 -0.660975 0.770606 1.230229 0.685062 -0.353472 0.394788 0.451496 -0.321661 0.199882 0.231208 -0.310569 1.216436 2.430949 2.503290 -0.526881 -0.208737 0.101905 0.110199 -0.082449 -0.077989 0.402951 1.880175 -1.488058 0.603424 0.275154 0.129314 0.522393 0.373662 0.032711 0.402190 0.172465 0.503801 0.262580 -1.141140 -0.070838 -0.346440 -0.318264 -0.911087 0.338546 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 2.354812 -0.308393 -0.647398 -1.107502 1.794561 2.684045 -0.688230 -0.882977 3.441635 -0.495561 -0.366786 -0.695145 0.920122 -0.308607 -0.482124 0.559776 0.880095 -0.458430 -0.444104 -0.213201 0.209192 -0.535127 -0.66116 0.453765 0.460478 -0.611041 0.685209 0.989332 -0.455591 2.020838 -0.626017 -0.285797 0.401370 -0.597940 -0.002637 0.257899 -0.440152 2.549303 -0.522169 -1.208609 0.040161 0.509544 -0.213201 -0.458831 3.240370 1.397391 -0.213201 0.331133 0.163663 0.301852 2.581989 -0.036322 -0.362143 -0.839117 1.272892 -0.150798 0.258170 -0.308607 -0.308607 4.176529 -0.458831 4.690416 1.543487 -0.291386 -0.213201 -0.213201 -0.213201 0.457146 -0.324878 0.638071 -0.375321 -0.264098 -0.660975 0.770606 1.230229 -0.196363 -1.144174 0.263960 -0.056770 -0.409990 0.000656 0.028134 -0.199915 -1.248978 -1.218664 -0.661636 -0.526379 -0.271923 0.069844 0.109885 -0.172745 0.256753 -0.437180 -0.085041 0.534017 -0.174262 -0.109797 -0.229347 0.015683 -0.111461 -0.350344 -0.210248 -0.401559 -0.290374 -0.463418 -0.547747 -0.348088 0.224335 0.361706 0.487383 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -0.288416 0.677296 -0.694405 0.858350 0.487224 -0.432331 -0.495561 0.606766 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 0.732822 -0.213201 0.556288 0.561766 1.556719 1.830379 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.899668 1.540314 -0.410105 -2.063646 -0.509368 -0.662030 -0.522169 0.037557 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 0.799076 -0.362143 0.413793 -0.556890 -0.278572 -0.274281 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.402920 -0.005825 -0.734232 1.563723 0.183675 0.200628 -0.163011 -0.363060 0.183853 -0.040705 0.471495 0.845016 -0.055272 -0.395340 0.229561 -0.309671 0.042430 -0.172341 -0.582692 -0.526883 -0.970017 0.047138 -0.616358 0.207388 0.112309 0.157398 -0.722995 0.556356 -0.560003 0.257622 0.112980 -0.367147 0.213799 -0.093517 -0.101010 -0.299173 0.233383 0.015376 0.661861 -0.397483 -0.007674 -0.020725 0.580397 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 0.466515 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 1.732827 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 1.955677 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 1.722814 -0.611041 -0.435773 -0.440926 1.075912 -0.769976 -0.626017 -0.285797 -0.692565 -0.628416 -0.314340 1.137342 -0.379254 0.028423 2.481339 1.127953 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.556890 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.124128 -0.559184 1.300123 0.280635 -0.473019 -0.410698 1.935219 1.932746 -0.649584 2.010995 0.251582 -0.617142 0.943337 -0.694539 0.242444 -0.316691 0.445994 -0.103504 -0.928071 -0.526259 -0.043918 0.556229 -0.562001 -0.523909 -1.453514 -1.038963 -0.702544 0.833573 -0.648508 -0.641610 -0.724841 -0.737085 -0.712697 -0.825083 -0.563530 -0.732682 -0.788433 -0.918720 0.570570 -0.418096 -0.521056 -0.836672 -1.023990 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 1.021053 0.109427 -0.882977 -0.432331 -0.495561 0.634977 -0.695145 -0.511968 -0.308607 -0.482124 0.800756 -0.884527 -0.458430 -0.241607 -0.213201 -0.131058 0.586510 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.733998 1.616607 -0.450977 -0.081738 -0.543976 -1.334746 0.505208 0.738526 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.614352 -0.556890 -0.890879 -0.783861 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.445444 -0.776063 1.113066 -1.254281 -0.843553 -0.133065 0.327619 -0.289030
2 0.183853 -0.040705 0.471495 0.845016 -0.055272 -0.395340 0.229561 -0.309671 0.042430 -0.172341 -0.582692 -0.526883 -0.970017 0.047138 -0.616358 0.207388 0.112309 0.157398 -0.722995 0.556356 -0.560003 0.257622 0.112980 -0.367147 0.213799 -0.093517 -0.101010 -0.299173 0.233383 0.015376 0.661861 -0.397483 -0.007674 -0.020725 0.580397 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 0.466515 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 1.732827 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 1.955677 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 1.722814 -0.611041 -0.435773 -0.440926 1.075912 -0.769976 -0.626017 -0.285797 -0.692565 -0.628416 -0.314340 1.137342 -0.379254 0.028423 2.481339 1.127953 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.556890 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.124128 -0.559184 1.300123 0.280635 -0.473019 -0.410698 1.935219 1.932746 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.66116 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -0.199070 -0.196860 0.224007 -0.627784 -0.394568 -0.371910 0.231481 -0.310718 -0.495657 -0.723037 -0.977411 -0.526861 0.037796 0.190379 0.297780 -0.592024 -0.504954 -0.619696 -0.722995 0.822870 -0.270438 -0.521601 -0.613028 -0.367147 -0.613711 -0.746924 -0.693098 -0.854123 -0.540266 -0.691858 -0.547747 -0.397483 -0.269302 -0.442263 0.200980 0.553168 -0.113045 -0.213201 3.240370 -0.521596 1.050911 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.110102 0.060693 0.472964 -0.432331 1.374052 -0.366786 -0.695145 -0.511968 -0.308607 1.482744 -0.227779 0.433147 -0.458430 -0.324416 -0.213201 0.789430 0.550350 1.556719 0.453765 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -0.626017 -0.285797 0.903469 -0.684978 1.613645 -1.520317 -0.546422 -0.738746 -0.522169 -0.429755 0.963863 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 -0.036322 -0.362143 -0.377578 -0.55689 -1.530258 -0.574628 -0.308607 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 1.942572 -0.213201 -0.213201 -0.213201 -0.554019 -0.398062 -0.387169 -0.066648 -0.218467 0.155439 0.121708 0.421832 -0.124642 -1.151814 0.457250 0.412672 0.006418 -0.743483 0.230873 -0.310386 -0.159353 -0.723037 -1.372129 -0.526870 -0.860539 0.334100 -0.671297 -0.041017 -0.566928 -0.222612 -0.702544 0.833573 -0.656113 -0.247066 -0.357242 -0.737085 -0.344148 -0.534075 -0.177197 -0.370581 -0.588272 -0.735742 0.661861 -0.418096 -0.501311 -0.806176 -1.002062 ... -1.807243 -0.955395 4.690416 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 2.581989 -1.707117 -0.362143 -1.615163 1.272892 0.429755 -0.649469 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 1.543487 -2.525343 -0.213201 -0.213201 -0.213201 -1.034337 -0.768981 -0.289564 -1.977723 -0.827478 0.597322 -0.512773 -1.420765 -0.649584 2.010995 0.251582 -0.617142 0.943337 -0.694539 0.242444 -0.316691 0.445994 -0.103504 -0.928071 -0.526259 -0.043918 0.556229 -0.562001 -0.523909 -1.453514 -1.038963 -0.702544 0.833573 -0.648508 -0.641610 -0.724841 -0.737085 -0.712697 -0.825083 -0.563530 -0.732682 -0.788433 -0.918720 0.570570 -0.418096 -0.521056 -0.836672 -1.023990 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 1.021053 0.109427 -0.882977 -0.432331 -0.495561 0.634977 -0.695145 -0.511968 -0.308607 -0.482124 0.800756 -0.884527 -0.458430 -0.241607 -0.213201 -0.131058 0.586510 -0.66116 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.733998 1.616607 -0.450977 -0.081738 -0.543976 -1.334746 0.505208 0.738526 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.614352 -0.556890 -0.890879 -0.783861 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.445444 -0.776063 1.113066 -1.254281 -0.843553 -0.133065 0.327619 -0.289030 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 -0.649584 2.010995 0.251582 -0.617142 0.943337 -0.694539 0.242444 -0.316691 0.445994 -0.103504 -0.928071 -0.526259 -0.043918 0.556229 -0.562001 -0.523909 -1.453514 -1.038963 -0.702544 0.833573 -0.648508 -0.641610 -0.724841 -0.737085 -0.712697 -0.825083 -0.563530 -0.732682 -0.788433 -0.918720 0.570570 -0.418096 -0.521056 -0.836672 -1.023990 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 1.021053 0.109427 -0.882977 -0.432331 -0.495561 0.634977 -0.695145 -0.511968 -0.308607 -0.482124 0.800756 -0.884527 -0.458430 -0.241607 -0.213201 -0.131058 0.586510 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.733998 1.616607 -0.450977 -0.081738 -0.543976 -1.334746 0.505208 0.738526 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.614352 -0.556890 -0.890879 -0.783861 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.445444 -0.776063 1.113066 -1.254281 -0.843553 -0.133065 0.327619 -0.289030
3 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.66116 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 0.280001 -0.334373 0.630545 0.055833 3.962299 -0.793519 0.230539 -0.310204 0.445994 1.755094 1.292222 -0.526815 0.156428 1.016748 0.338924 0.290406 0.348255 0.096033 0.928961 -1.791428 -0.601193 -0.627759 -0.711936 -0.544819 -0.079577 -0.325168 0.513716 0.276996 0.961352 0.680851 0.661861 -0.365611 -1.422146 -1.341137 -1.740279 -1.207619 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 1.633996 -2.365174 0.606766 1.135685 -0.511968 -0.308607 -0.624985 -0.104126 -0.884527 -0.458430 0.732822 -0.213201 -1.508973 -1.645349 -0.661160 0.372512 -0.621218 2.841313 -0.435773 -0.440926 -0.455591 0.718611 -1.876177 -0.285797 -0.687785 0.161397 -2.628012 0.817036 -0.230842 1.127001 0.139624 0.972182 -1.807243 -0.955395 4.690416 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 2.581989 -1.707117 -0.362143 -1.615163 1.272892 0.429755 -0.649469 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 1.543487 -2.525343 -0.213201 -0.213201 -0.213201 -1.034337 -0.768981 -0.289564 -1.977723 -0.827478 0.597322 -0.512773 -1.420765 0.056275 0.601482 0.471762 0.965126 -0.240342 0.052405 0.229605 -0.309695 1.118602 1.479746 1.390901 1.989774 0.268481 -0.303336 0.012599 0.028435 0.270933 0.381854 -0.076800 0.075729 -0.598016 -0.072121 0.348721 -0.256771 -0.208879 0.843670 -0.280751 0.706959 -0.377127 0.594028 1.460660 -0.378212 0.165098 1.162146 0.833353 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 3.112079 -0.647398 1.243491 -0.480351 -0.694405 -0.688230 1.816859 -0.432331 -0.495561 -0.366786 2.664147 -0.511968 -0.308607 -0.482124 0.955547 -0.884527 -0.458430 -0.324416 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 0.598568 0.413434 -0.435773 2.273766 0.236285 -0.769976 -0.626017 1.721376 -0.698907 -0.636995 -0.326842 2.026631 -0.376824 1.744600 -0.522169 0.972182 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 -1.091089 -0.329293 -0.387298 0.799076 -0.362143 1.579684 -0.556890 0.845212 0.327629 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 4.690416 -0.213201 -0.165266 -0.039651 -0.552557 0.652353 0.187464 -0.152293 -0.420402 0.486664 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.55689 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 ... 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 -0.036322 -0.362143 -0.377578 -0.556890 -0.772086 -0.727688 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.638014 -0.373643 -0.481565 0.448823 -0.233181 0.343489 0.268100 0.182050 -1.339938 0.444870 0.253486 -0.901151 -0.152214 -1.042683 0.241000 -0.315904 0.964863 0.693038 -0.357138 -0.526403 0.969109 -0.533923 0.709041 -1.215466 -0.276245 -0.137725 -0.684106 0.233728 -0.814932 -1.262735 -1.303547 -1.022430 -1.225889 -1.230302 -1.129809 -1.263443 -1.114134 -1.216461 0.570570 -0.429222 -1.014693 -0.929799 -0.845377 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.162392 0.109427 -0.882977 -0.432331 -0.495561 -1.340339 1.153064 -0.511968 -0.308607 -0.482124 0.898293 -0.884527 -0.458430 -1.381653 -0.213201 -0.131058 0.678924 -0.66116 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.768318 1.437885 -0.514615 -0.077221 -0.532560 -0.462400 -0.911354 0.349099 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.556890 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 -1.573701 1.193554 0.430590 -0.375462 -0.086117 -1.439770 0.228166 -0.308911 1.656688 0.103007 -0.780051 -0.526903 1.203883 -1.415519 1.465101 -1.347549 1.162418 0.678178 -1.660842 0.058766 -0.928528 -1.372879 -1.406169 -1.434358 -1.395786 -1.364454 -1.371840 -1.490293 -1.312462 -1.397762 0.661861 -0.443256 -1.488584 -1.704924 -1.164169 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 -0.495561 -0.290532 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 -0.458430 -0.241607 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 -0.626017 -0.285797 -0.779939 -0.748232 -0.483822 0.342808 -0.393932 -0.462400 0.572190 0.349099 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.492588 -0.556890 -0.082356 -1.373751 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.248334 -1.009130 1.627587 1.033123 -1.454953 1.869310 0.564352 -0.990362 -0.199070 -0.196860 0.224007 -0.627784 -0.394568 -0.371910 0.231481 -0.310718 -0.495657 -0.723037 -0.977411 -0.526861 0.037796 0.190379 0.297780 -0.592024 -0.504954 -0.619696 -0.722995 0.822870 -0.270438 -0.521601 -0.613028 -0.367147 -0.613711 -0.746924 -0.693098 -0.854123 -0.540266 -0.691858 -0.547747 -0.397483 -0.269302 -0.442263 0.200980 0.553168 -0.113045 -0.213201 3.240370 -0.521596 1.050911 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.110102 0.060693 0.472964 -0.432331 1.374052 -0.366786 -0.695145 -0.511968 -0.308607 1.482744 -0.227779 0.433147 -0.458430 -0.324416 -0.213201 0.789430 0.550350 1.556719 0.453765 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -0.626017 -0.285797 0.903469 -0.684978 1.613645 -1.520317 -0.546422 -0.738746 -0.522169 -0.429755 0.963863 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 -0.036322 -0.362143 -0.377578 -0.556890 -1.530258 -0.574628 -0.308607 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 1.942572 -0.213201 -0.213201 -0.213201 -0.554019 -0.398062 -0.387169 -0.066648 -0.218467 0.155439 0.121708 0.421832 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.661160 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367
4 0.280001 -0.334373 0.630545 0.055833 3.962299 -0.793519 0.230539 -0.310204 0.445994 1.755094 1.292222 -0.526815 0.156428 1.016748 0.338924 0.290406 0.348255 0.096033 0.928961 -1.791428 -0.601193 -0.627759 -0.711936 -0.544819 -0.079577 -0.325168 0.513716 0.276996 0.961352 0.680851 0.661861 -0.365611 -1.422146 -1.341137 -1.740279 -1.207619 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 1.633996 -2.365174 0.606766 1.135685 -0.511968 -0.308607 -0.624985 -0.104126 -0.884527 -0.458430 0.732822 -0.213201 -1.508973 -1.645349 -0.66116 0.372512 -0.621218 2.841313 -0.435773 -0.440926 -0.455591 0.718611 -1.876177 -0.285797 -0.687785 0.161397 -2.628012 0.817036 -0.230842 1.127001 0.139624 0.972182 -1.807243 -0.955395 4.690416 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 2.581989 -1.707117 -0.362143 -1.615163 1.272892 0.429755 -0.649469 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 1.543487 -2.525343 -0.213201 -0.213201 -0.213201 -1.034337 -0.768981 -0.289564 -1.977723 -0.827478 0.597322 -0.512773 -1.420765 -0.196363 -1.144174 0.263960 -0.056770 -0.409990 0.000656 0.028134 -0.199915 -1.248978 -1.218664 -0.661636 -0.526379 -0.271923 0.069844 0.109885 -0.172745 0.256753 -0.437180 -0.085041 0.534017 -0.174262 -0.109797 -0.229347 0.015683 -0.111461 -0.350344 -0.210248 -0.401559 -0.290374 -0.463418 -0.547747 -0.348088 0.224335 0.361706 0.487383 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -0.288416 0.677296 -0.694405 0.858350 0.487224 -0.432331 -0.495561 0.606766 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 0.732822 -0.213201 0.556288 0.561766 1.556719 1.830379 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.899668 1.540314 -0.410105 -2.063646 -0.509368 -0.662030 -0.522169 0.037557 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 0.799076 -0.362143 0.413793 -0.556890 -0.278572 -0.274281 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.402920 -0.005825 -0.734232 1.563723 0.183675 0.200628 -0.163011 -0.363060 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.66116 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 -1.339938 0.444870 0.253486 -0.901151 -0.152214 -1.042683 0.241000 -0.315904 0.964863 0.693038 -0.357138 -0.526403 0.969109 -0.533923 0.709041 -1.215466 -0.276245 -0.137725 -0.684106 0.233728 -0.814932 -1.262735 -1.303547 -1.022430 -1.225889 -1.230302 -1.129809 -1.263443 -1.114134 -1.216461 0.570570 -0.429222 -1.014693 -0.929799 -0.845377 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.162392 0.109427 -0.882977 -0.432331 -0.495561 -1.340339 1.153064 -0.511968 -0.308607 -0.482124 0.898293 -0.884527 -0.458430 -1.381653 -0.213201 -0.131058 0.678924 -0.661160 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.768318 1.437885 -0.514615 -0.077221 -0.532560 -0.462400 -0.911354 0.349099 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.55689 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 0.152079 -1.150286 0.309664 -0.331836 -0.409990 -0.023766 0.229566 -0.309674 -0.764700 -0.723037 -0.306389 -0.526878 -0.317935 -0.018651 0.048713 -0.220755 0.095997 0.257488 -0.085041 0.534017 -0.163183 -0.016913 -0.142807 0.015683 -0.036322 -0.291014 -0.146932 -0.342215 -0.242671 -0.419810 -0.547747 -0.348088 0.224335 0.361706 0.487383 ... -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -1.339938 0.444870 0.253486 -0.901151 -0.152214 -1.042683 0.241000 -0.315904 0.964863 0.693038 -0.357138 -0.526403 0.969109 -0.533923 0.709041 -1.215466 -0.276245 -0.137725 -0.684106 0.233728 -0.814932 -1.262735 -1.303547 -1.022430 -1.225889 -1.230302 -1.129809 -1.263443 -1.114134 -1.216461 0.570570 -0.429222 -1.014693 -0.929799 -0.845377 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.162392 0.109427 -0.882977 -0.432331 -0.495561 -1.340339 1.153064 -0.511968 -0.308607 -0.482124 0.898293 -0.884527 -0.458430 -1.381653 -0.213201 -0.131058 0.678924 -0.66116 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.768318 1.437885 -0.514615 -0.077221 -0.532560 -0.462400 -0.911354 0.349099 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.556890 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 -0.649584 2.010995 0.251582 -0.617142 0.943337 -0.694539 0.242444 -0.316691 0.445994 -0.103504 -0.928071 -0.526259 -0.043918 0.556229 -0.562001 -0.523909 -1.453514 -1.038963 -0.702544 0.833573 -0.648508 -0.641610 -0.724841 -0.737085 -0.712697 -0.825083 -0.563530 -0.732682 -0.788433 -0.918720 0.570570 -0.418096 -0.521056 -0.836672 -1.023990 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 1.021053 0.109427 -0.882977 -0.432331 -0.495561 0.634977 -0.695145 -0.511968 -0.308607 -0.482124 0.800756 -0.884527 -0.458430 -0.241607 -0.213201 -0.131058 0.586510 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.733998 1.616607 -0.450977 -0.081738 -0.543976 -1.334746 0.505208 0.738526 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.614352 -0.556890 -0.890879 -0.783861 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.445444 -0.776063 1.113066 -1.254281 -0.843553 -0.133065 0.327619 -0.289030 0.273924 0.496819 0.454982 -0.321846 -0.271187 -0.022674 0.229538 -0.309659 -0.764700 -0.227411 0.404105 -0.526884 -0.507799 -0.278604 -0.144944 -0.009012 0.363246 0.280423 0.120964 -0.028294 -0.518273 0.344213 0.193657 0.126058 0.612544 0.221334 0.373675 0.145739 0.292756 0.069652 0.570570 -0.326143 0.466217 1.718590 0.827571 0.553168 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.104345 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.374052 1.580319 1.135685 -0.511968 -0.308607 1.482744 -0.104126 -0.884527 -0.458430 1.790059 -0.213201 0.102084 -0.535127 -0.661160 -0.922850 1.841899 1.675814 -0.435773 -0.440926 -0.455591 -0.769976 0.624142 -0.285797 -0.688087 -0.623190 1.992128 0.400658 -0.388534 1.465670 -0.056724 1.127953 0.963863 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 1.634474 -0.362143 1.951090 -0.556890 0.055666 0.318437 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 1.942572 -0.213201 -0.213201 4.690416 -0.646874 0.627969 -1.587382 0.992529 1.213578 0.439482 -1.197707 -0.877851 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
30639 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.66116 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.661160 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 -1.088274 -2.991634 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.144933 -0.688230 -0.882977 -0.432331 -0.495561 -2.256429 1.135685 -0.511968 -0.308607 -0.482124 -1.275893 -0.884527 -0.458430 -1.381653 -0.213201 -0.945646 -1.645349 -0.66116 0.480336 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 0.835328 -1.876177 -0.285797 -0.833930 -0.821329 -0.600834 0.333776 -0.136249 -0.462400 -0.736399 -0.429755 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 -0.196363 -1.144174 0.263960 -0.056770 -0.409990 0.000656 0.028134 -0.199915 -1.248978 -1.218664 -0.661636 -0.526379 -0.271923 0.069844 0.109885 -0.172745 0.256753 -0.437180 -0.085041 0.534017 -0.174262 -0.109797 -0.229347 0.015683 -0.111461 -0.350344 -0.210248 -0.401559 -0.290374 -0.463418 -0.547747 -0.348088 0.224335 0.361706 0.487383 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -0.288416 0.677296 -0.694405 0.858350 0.487224 -0.432331 -0.495561 0.606766 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 0.732822 -0.213201 0.556288 0.561766 1.556719 1.830379 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.899668 1.540314 -0.410105 -2.063646 -0.509368 -0.662030 -0.522169 0.037557 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 0.799076 -0.362143 0.413793 -0.55689 -0.278572 -0.274281 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.402920 -0.005825 -0.734232 1.563723 0.183675 0.200628 -0.163011 -0.363060 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 ... -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.66116 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 -0.124642 -1.151814 0.457250 0.412672 0.006418 -0.743483 0.230873 -0.310386 -0.159353 -0.723037 -1.372129 -0.526870 -0.860539 0.334100 -0.671297 -0.041017 -0.566928 -0.222612 -0.702544 0.833573 -0.656113 -0.247066 -0.357242 -0.737085 -0.344148 -0.534075 -0.177197 -0.370581 -0.588272 -0.735742 0.661861 -0.418096 -0.501311 -0.806176 -1.002062 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 -0.352571 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 0.759275 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 0.898439 -0.213201 -0.945646 -0.535127 -0.661160 0.345941 -0.621218 -0.611041 -0.435773 2.755129 -0.455591 -0.769976 -0.626017 -0.285797 -0.707901 -0.649778 -0.340124 0.446687 -0.387409 -0.462400 2.218121 0.972182 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.871719 -0.362143 -0.570723 -0.556890 0.722371 -0.473812 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.433969 -0.767264 1.037269 -1.394782 -0.772235 -0.163592 -0.288000 -0.791228 1.878843 -0.076765 0.423187 1.918606 -0.308202 1.417827 0.231081 -0.310499 -0.926126 0.268215 1.943508 -0.526882 -0.918950 0.324822 -0.240361 0.996900 -0.043327 0.418482 2.649262 -1.845344 2.899623 1.905926 1.648716 2.040820 2.171503 1.452295 2.602939 2.235178 2.813781 2.374254 -2.168167 3.189220 0.635984 0.268774 -1.068031 0.338546 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 1.483334 0.376082 3.760314 -0.694405 -0.688230 1.619693 1.504652 -0.495561 -0.366786 -0.695145 2.319950 -0.308607 -0.482124 -0.406826 0.880095 -0.458430 -0.465588 4.690416 -0.309841 -0.535127 -0.661160 -0.922850 0.598568 2.321311 -0.435773 -0.440926 2.913480 0.625431 -0.626017 -0.285797 -0.105289 -0.234209 0.668724 0.325251 2.299100 1.461545 -0.522169 -1.916659 0.040161 -0.222925 -0.213201 2.179449 3.240370 3.287980 -0.213201 -1.192079 0.163663 -0.329293 2.581989 -0.036322 -0.362143 -0.620949 3.102673 2.073493 2.193864 -0.308607 -0.308607 1.942572 -0.458831 -0.213201 1.543487 -0.291386 -0.213201 -0.213201 -0.213201 1.459750 1.183813 -0.908770 -0.606055 1.252496 -1.028240 -1.380722 -0.907490 0.280001 -0.334373 0.630545 0.055833 3.962299 -0.793519 0.230539 -0.310204 0.445994 1.755094 1.292222 -0.526815 0.156428 1.016748 0.338924 0.290406 0.348255 0.096033 0.928961 -1.791428 -0.601193 -0.627759 -0.711936 -0.544819 -0.079577 -0.325168 0.513716 0.276996 0.961352 0.680851 0.661861 -0.365611 -1.422146 -1.341137 -1.740279 -1.207619 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 1.633996 -2.365174 0.606766 1.135685 -0.511968 -0.308607 -0.624985 -0.104126 -0.884527 -0.458430 0.732822 -0.213201 -1.508973 -1.645349 -0.661160 0.372512 -0.621218 2.841313 -0.435773 -0.440926 -0.455591 0.718611 -1.876177 -0.285797 -0.687785 0.161397 -2.628012 0.817036 -0.230842 1.127001 0.139624 0.972182 -1.807243 -0.955395 4.690416 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 2.581989 -1.707117 -0.362143 -1.615163 1.272892 0.429755 -0.649469 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 1.543487 -2.525343 -0.213201 -0.213201 -0.213201 -1.034337 -0.768981 -0.289564 -1.977723 -0.827478 0.597322 -0.512773 -1.420765
30640 -1.339938 0.444870 0.253486 -0.901151 -0.152214 -1.042683 0.241000 -0.315904 0.964863 0.693038 -0.357138 -0.526403 0.969109 -0.533923 0.709041 -1.215466 -0.276245 -0.137725 -0.684106 0.233728 -0.814932 -1.262735 -1.303547 -1.022430 -1.225889 -1.230302 -1.129809 -1.263443 -1.114134 -1.216461 0.570570 -0.429222 -1.014693 -0.929799 -0.845377 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.162392 0.109427 -0.882977 -0.432331 -0.495561 -1.340339 1.153064 -0.511968 -0.308607 -0.482124 0.898293 -0.884527 -0.458430 -1.381653 -0.213201 -0.131058 0.678924 -0.66116 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.768318 1.437885 -0.514615 -0.077221 -0.532560 -0.462400 -0.911354 0.349099 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.556890 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 -1.339938 0.444870 0.253486 -0.901151 -0.152214 -1.042683 0.241000 -0.315904 0.964863 0.693038 -0.357138 -0.526403 0.969109 -0.533923 0.709041 -1.215466 -0.276245 -0.137725 -0.684106 0.233728 -0.814932 -1.262735 -1.303547 -1.022430 -1.225889 -1.230302 -1.129809 -1.263443 -1.114134 -1.216461 0.570570 -0.429222 -1.014693 -0.929799 -0.845377 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.162392 0.109427 -0.882977 -0.432331 -0.495561 -1.340339 1.153064 -0.511968 -0.308607 -0.482124 0.898293 -0.884527 -0.458430 -1.381653 -0.213201 -0.131058 0.678924 -0.661160 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.768318 1.437885 -0.514615 -0.077221 -0.532560 -0.462400 -0.911354 0.349099 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.556890 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 1.123589 -0.692988 0.383419 1.247929 -0.442022 0.846034 -4.682939 2.367128 -1.323482 -1.104288 -0.005795 -0.526875 -0.849974 -0.013828 -0.395900 0.628824 -0.049221 0.413700 0.821080 -1.196554 1.157294 1.099306 0.897182 1.206775 1.178708 0.668380 1.196305 0.916772 1.159312 0.861817 -1.574774 0.284577 0.538947 0.433550 -0.359876 0.373629 2.626266 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.773090 1.969038 -0.480351 -0.694405 0.109427 -0.882977 -0.432331 -0.495561 -0.366786 -0.695145 1.832828 3.240370 -0.482124 -0.383059 0.880095 -0.458430 -0.465588 -0.213201 -0.131058 -0.535127 -0.66116 1.686452 -0.621218 0.379705 1.713726 2.359360 -0.455591 -0.769976 0.487402 -0.285797 -0.645847 1.867884 0.087145 0.542836 1.774819 -0.218804 -0.522169 -1.727845 0.040161 -0.222925 -0.213201 2.179449 -0.308607 1.397391 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.036322 -0.362143 -0.160777 1.272892 1.092159 1.192981 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.970825 0.542707 -0.508982 0.070390 0.725607 -0.834255 -0.508966 0.575880 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.55689 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 -1.573701 1.193554 0.430590 -0.375462 -0.086117 -1.439770 0.228166 -0.308911 1.656688 0.103007 -0.780051 -0.526903 1.203883 -1.415519 1.465101 -1.347549 1.162418 0.678178 -1.660842 0.058766 -0.928528 -1.372879 -1.406169 -1.434358 -1.395786 -1.364454 -1.371840 -1.490293 -1.312462 -1.397762 0.661861 -0.443256 -1.488584 -1.704924 -1.164169 ... 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.556890 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.66116 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 0.183853 -0.040705 0.471495 0.845016 -0.055272 -0.395340 0.229561 -0.309671 0.042430 -0.172341 -0.582692 -0.526883 -0.970017 0.047138 -0.616358 0.207388 0.112309 0.157398 -0.722995 0.556356 -0.560003 0.257622 0.112980 -0.367147 0.213799 -0.093517 -0.101010 -0.299173 0.233383 0.015376 0.661861 -0.397483 -0.007674 -0.020725 0.580397 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 0.466515 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 1.732827 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 1.955677 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 1.722814 -0.611041 -0.435773 -0.440926 1.075912 -0.769976 -0.626017 -0.285797 -0.692565 -0.628416 -0.314340 1.137342 -0.379254 0.028423 2.481339 1.127953 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.556890 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.124128 -0.559184 1.300123 0.280635 -0.473019 -0.410698 1.935219 1.932746 -0.649584 2.010995 0.251582 -0.617142 0.943337 -0.694539 0.242444 -0.316691 0.445994 -0.103504 -0.928071 -0.526259 -0.043918 0.556229 -0.562001 -0.523909 -1.453514 -1.038963 -0.702544 0.833573 -0.648508 -0.641610 -0.724841 -0.737085 -0.712697 -0.825083 -0.563530 -0.732682 -0.788433 -0.918720 0.570570 -0.418096 -0.521056 -0.836672 -1.023990 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 1.021053 0.109427 -0.882977 -0.432331 -0.495561 0.634977 -0.695145 -0.511968 -0.308607 -0.482124 0.800756 -0.884527 -0.458430 -0.241607 -0.213201 -0.131058 0.586510 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.733998 1.616607 -0.450977 -0.081738 -0.543976 -1.334746 0.505208 0.738526 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.614352 -0.556890 -0.890879 -0.783861 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.445444 -0.776063 1.113066 -1.254281 -0.843553 -0.133065 0.327619 -0.289030 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321
30641 0.056275 0.601482 0.471762 0.965126 -0.240342 0.052405 0.229605 -0.309695 1.118602 1.479746 1.390901 1.989774 0.268481 -0.303336 0.012599 0.028435 0.270933 0.381854 -0.076800 0.075729 -0.598016 -0.072121 0.348721 -0.256771 -0.208879 0.843670 -0.280751 0.706959 -0.377127 0.594028 1.460660 -0.378212 0.165098 1.162146 0.833353 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 3.112079 -0.647398 1.243491 -0.480351 -0.694405 -0.688230 1.816859 -0.432331 -0.495561 -0.366786 2.664147 -0.511968 -0.308607 -0.482124 0.955547 -0.884527 -0.458430 -0.324416 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 0.598568 0.413434 -0.435773 2.273766 0.236285 -0.769976 -0.626017 1.721376 -0.698907 -0.636995 -0.326842 2.026631 -0.376824 1.744600 -0.522169 0.972182 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 -1.091089 -0.329293 -0.387298 0.799076 -0.362143 1.579684 -0.556890 0.845212 0.327629 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 4.690416 -0.213201 -0.165266 -0.039651 -0.552557 0.652353 0.187464 -0.152293 -0.420402 0.486664 -0.680115 0.536545 0.158193 -0.369303 -0.394568 -0.347487 0.037668 -0.205110 -1.033743 -1.273733 -1.372129 -0.525782 0.115873 0.346261 0.398995 -0.516138 -0.084662 -3.545366 -0.722995 0.822870 -0.281516 -0.614485 -0.699568 -0.367147 -0.688851 -0.806254 -0.744794 -0.902577 -0.612948 -0.758300 -0.547747 -0.397483 -0.269302 -0.442263 0.200980 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.110102 0.858350 0.487224 -0.432331 -0.495561 -0.366786 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 -0.324416 -0.213201 0.556288 1.741627 1.556719 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.858162 1.474811 -0.483206 -2.651958 -0.590457 -0.936726 -0.522169 -0.429755 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 -0.036322 -0.362143 -0.377578 -0.556890 -0.772086 -0.727688 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.638014 -0.373643 -0.481565 0.448823 -0.233181 0.343489 0.268100 0.182050 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.66116 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 -1.339938 0.444870 0.253486 -0.901151 -0.152214 -1.042683 0.241000 -0.315904 0.964863 0.693038 -0.357138 -0.526403 0.969109 -0.533923 0.709041 -1.215466 -0.276245 -0.137725 -0.684106 0.233728 -0.814932 -1.262735 -1.303547 -1.022430 -1.225889 -1.230302 -1.129809 -1.263443 -1.114134 -1.216461 0.570570 -0.429222 -1.014693 -0.929799 -0.845377 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.162392 0.109427 -0.882977 -0.432331 -0.495561 -1.340339 1.153064 -0.511968 -0.308607 -0.482124 0.898293 -0.884527 -0.458430 -1.381653 -0.213201 -0.131058 0.678924 -0.661160 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.768318 1.437885 -0.514615 -0.077221 -0.532560 -0.462400 -0.911354 0.349099 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.55689 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 0.273924 0.496819 0.454982 -0.321846 -0.271187 -0.022674 0.229538 -0.309659 -0.764700 -0.227411 0.404105 -0.526884 -0.507799 -0.278604 -0.144944 -0.009012 0.363246 0.280423 0.120964 -0.028294 -0.518273 0.344213 0.193657 0.126058 0.612544 0.221334 0.373675 0.145739 0.292756 0.069652 0.570570 -0.326143 0.466217 1.718590 0.827571 ... -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -2.665009 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.570724 -0.556890 -0.573846 -1.824997 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.661486 -1.114165 0.490377 -1.650130 -1.730851 3.382363 0.372204 -0.634367 1.065996 0.050359 0.433525 1.825444 -0.433124 0.448946 0.231079 -0.310499 -1.168265 -0.723037 0.404105 -0.526883 -0.818551 -0.069808 -0.311742 0.192350 -0.048318 0.413831 0.726870 -1.313071 0.839266 0.835321 0.651226 0.905222 1.023632 0.545931 1.014313 0.746194 1.113758 0.820173 -1.118318 0.057815 0.147277 0.399290 -0.669480 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 2.903823 0.421299 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 -0.495561 -0.366786 -0.695145 2.309694 -0.308607 -0.482124 -1.373429 0.880095 -0.458430 -0.465588 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 0.598568 0.379705 -0.435773 -0.440926 2.899050 -0.769976 -0.626017 -0.285797 -0.648710 -0.570587 0.165606 0.349769 2.873511 -0.119319 -0.522169 -1.727845 -0.883541 -0.955395 -0.213201 2.179449 -0.308607 1.397391 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 -0.207483 1.272892 1.464603 1.029491 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.099860 0.486760 -1.163556 0.319299 0.775477 -0.245278 -1.215224 -0.891051 0.280001 -0.334373 0.630545 0.055833 3.962299 -0.793519 0.230539 -0.310204 0.445994 1.755094 1.292222 -0.526815 0.156428 1.016748 0.338924 0.290406 0.348255 0.096033 0.928961 -1.791428 -0.601193 -0.627759 -0.711936 -0.544819 -0.079577 -0.325168 0.513716 0.276996 0.961352 0.680851 0.661861 -0.365611 -1.422146 -1.341137 -1.740279 -1.207619 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 1.633996 -2.365174 0.606766 1.135685 -0.511968 -0.308607 -0.624985 -0.104126 -0.884527 -0.458430 0.732822 -0.213201 -1.508973 -1.645349 -0.661160 0.372512 -0.621218 2.841313 -0.435773 -0.440926 -0.455591 0.718611 -1.876177 -0.285797 -0.687785 0.161397 -2.628012 0.817036 -0.230842 1.127001 0.139624 0.972182 -1.807243 -0.955395 4.690416 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 2.581989 -1.707117 -0.362143 -1.615163 1.272892 0.429755 -0.649469 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 1.543487 -2.525343 -0.213201 -0.213201 -0.213201 -1.034337 -0.768981 -0.289564 -1.977723 -0.827478 0.597322 -0.512773 -1.420765 0.280001 -0.334373 0.630545 0.055833 3.962299 -0.793519 0.230539 -0.310204 0.445994 1.755094 1.292222 -0.526815 0.156428 1.016748 0.338924 0.290406 0.348255 0.096033 0.928961 -1.791428 -0.601193 -0.627759 -0.711936 -0.544819 -0.079577 -0.325168 0.513716 0.276996 0.961352 0.680851 0.661861 -0.365611 -1.422146 -1.341137 -1.740279 -1.207619 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 1.633996 -2.365174 0.606766 1.135685 -0.511968 -0.308607 -0.624985 -0.104126 -0.884527 -0.458430 0.732822 -0.213201 -1.508973 -1.645349 -0.661160 0.372512 -0.621218 2.841313 -0.435773 -0.440926 -0.455591 0.718611 -1.876177 -0.285797 -0.687785 0.161397 -2.628012 0.817036 -0.230842 1.127001 0.139624 0.972182 -1.807243 -0.955395 4.690416 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 2.581989 -1.707117 -0.362143 -1.615163 1.272892 0.429755 -0.649469 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 1.543487 -2.525343 -0.213201 -0.213201 -0.213201 -1.034337 -0.768981 -0.289564 -1.977723 -0.827478 0.597322 -0.512773 -1.420765 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.556890 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321
30642 1.065996 0.050359 0.433525 1.825444 -0.433124 0.448946 0.231079 -0.310499 -1.168265 -0.723037 0.404105 -0.526883 -0.818551 -0.069808 -0.311742 0.192350 -0.048318 0.413831 0.726870 -1.313071 0.839266 0.835321 0.651226 0.905222 1.023632 0.545931 1.014313 0.746194 1.113758 0.820173 -1.118318 0.057815 0.147277 0.399290 -0.669480 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 2.903823 0.421299 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 -0.495561 -0.366786 -0.695145 2.309694 -0.308607 -0.482124 -1.373429 0.880095 -0.458430 -0.465588 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 0.598568 0.379705 -0.435773 -0.440926 2.899050 -0.769976 -0.626017 -0.285797 -0.648710 -0.570587 0.165606 0.349769 2.873511 -0.119319 -0.522169 -1.727845 -0.883541 -0.955395 -0.213201 2.179449 -0.308607 1.397391 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 -0.207483 1.272892 1.464603 1.029491 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.099860 0.486760 -1.163556 0.319299 0.775477 -0.245278 -1.215224 -0.891051 0.273924 0.496819 0.454982 -0.321846 -0.271187 -0.022674 0.229538 -0.309659 -0.764700 -0.227411 0.404105 -0.526884 -0.507799 -0.278604 -0.144944 -0.009012 0.363246 0.280423 0.120964 -0.028294 -0.518273 0.344213 0.193657 0.126058 0.612544 0.221334 0.373675 0.145739 0.292756 0.069652 0.570570 -0.326143 0.466217 1.718590 0.827571 0.553168 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.104345 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.374052 1.580319 1.135685 -0.511968 -0.308607 1.482744 -0.104126 -0.884527 -0.458430 1.790059 -0.213201 0.102084 -0.535127 -0.661160 -0.922850 1.841899 1.675814 -0.435773 -0.440926 -0.455591 -0.769976 0.624142 -0.285797 -0.688087 -0.623190 1.992128 0.400658 -0.388534 1.465670 -0.056724 1.127953 0.963863 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 1.634474 -0.362143 1.951090 -0.556890 0.055666 0.318437 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 1.942572 -0.213201 -0.213201 4.690416 -0.646874 0.627969 -1.587382 0.992529 1.213578 0.439482 -1.197707 -0.877851 -0.124642 -1.151814 0.457250 0.412672 0.006418 -0.743483 0.230873 -0.310386 -0.159353 -0.723037 -1.372129 -0.526870 -0.860539 0.334100 -0.671297 -0.041017 -0.566928 -0.222612 -0.702544 0.833573 -0.656113 -0.247066 -0.357242 -0.737085 -0.344148 -0.534075 -0.177197 -0.370581 -0.588272 -0.735742 0.661861 -0.418096 -0.501311 -0.806176 -1.002062 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 -0.352571 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 0.759275 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 0.898439 -0.213201 -0.945646 -0.535127 -0.66116 0.345941 -0.621218 -0.611041 -0.435773 2.755129 -0.455591 -0.769976 -0.626017 -0.285797 -0.707901 -0.649778 -0.340124 0.446687 -0.387409 -0.462400 2.218121 0.972182 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.871719 -0.362143 -0.570723 -0.556890 0.722371 -0.473812 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.433969 -0.767264 1.037269 -1.394782 -0.772235 -0.163592 -0.288000 -0.791228 0.529107 -0.850496 0.398464 -2.686513 -0.525659 0.672620 0.229539 -0.309659 0.042430 0.516029 0.996183 -0.526883 -0.301723 -0.225347 -0.479661 -0.220456 -0.418278 0.289905 0.415667 0.169350 0.060175 0.910130 0.720925 0.781342 0.882740 0.434681 0.447828 0.215241 0.385311 0.154262 -1.004204 -0.151171 1.112881 1.885100 1.755861 2.075265 -0.113045 4.690416 -0.308607 -0.521596 1.273176 -0.458413 -0.308393 -0.647398 0.530671 0.699641 -0.694405 -0.688230 0.484986 1.633996 1.374052 0.606766 1.135685 -0.511968 -0.308607 3.304752 1.051682 -0.884527 2.003899 0.732822 -0.213201 1.546840 -0.535127 -0.661160 0.354870 3.061686 -0.611041 -0.435773 -0.440926 -0.455591 0.718611 1.803574 -0.285797 -0.675401 1.932760 1.901386 0.047833 -0.425325 0.406110 -0.150087 0.349099 2.811268 1.242013 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 2.673169 0.932996 -0.387298 1.634474 -0.362143 1.848968 -0.55689 -1.039565 0.931759 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 3.515721 1.942572 -0.213201 -0.213201 -0.213201 0.365021 1.453200 -1.473082 0.448914 1.857432 -0.537387 -1.777282 -1.171321 0.685062 -0.353472 0.394788 0.451496 -0.321661 0.199882 0.231208 -0.310569 1.216436 2.430949 2.503290 -0.526881 -0.208737 0.101905 0.110199 -0.082449 -0.077989 0.402951 1.880175 -1.488058 0.603424 0.275154 0.129314 0.522393 0.373662 0.032711 0.402190 0.172465 0.503801 0.262580 -1.141140 -0.070838 -0.346440 -0.318264 -0.911087 ... -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.871719 -0.362143 -0.570723 -0.556890 0.722371 -0.473812 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.433969 -0.767264 1.037269 -1.394782 -0.772235 -0.163592 -0.288000 -0.791228 0.056275 0.601482 0.471762 0.965126 -0.240342 0.052405 0.229605 -0.309695 1.118602 1.479746 1.390901 1.989774 0.268481 -0.303336 0.012599 0.028435 0.270933 0.381854 -0.076800 0.075729 -0.598016 -0.072121 0.348721 -0.256771 -0.208879 0.843670 -0.280751 0.706959 -0.377127 0.594028 1.460660 -0.378212 0.165098 1.162146 0.833353 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 3.112079 -0.647398 1.243491 -0.480351 -0.694405 -0.688230 1.816859 -0.432331 -0.495561 -0.366786 2.664147 -0.511968 -0.308607 -0.482124 0.955547 -0.884527 -0.458430 -0.324416 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 0.598568 0.413434 -0.435773 2.273766 0.236285 -0.769976 -0.626017 1.721376 -0.698907 -0.636995 -0.326842 2.026631 -0.376824 1.744600 -0.522169 0.972182 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 -1.091089 -0.329293 -0.387298 0.799076 -0.362143 1.579684 -0.556890 0.845212 0.327629 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 4.690416 -0.213201 -0.165266 -0.039651 -0.552557 0.652353 0.187464 -0.152293 -0.420402 0.486664 -1.573701 1.193554 0.430590 -0.375462 -0.086117 -1.439770 0.228166 -0.308911 1.656688 0.103007 -0.780051 -0.526903 1.203883 -1.415519 1.465101 -1.347549 1.162418 0.678178 -1.660842 0.058766 -0.928528 -1.372879 -1.406169 -1.434358 -1.395786 -1.364454 -1.371840 -1.490293 -1.312462 -1.397762 0.661861 -0.443256 -1.488584 -1.704924 -1.164169 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 -0.495561 -0.290532 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 -0.458430 -0.241607 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 -0.626017 -0.285797 -0.779939 -0.748232 -0.483822 0.342808 -0.393932 -0.462400 0.572190 0.349099 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -1.707117 -0.362143 -1.492588 -0.556890 -0.082356 -1.373751 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.248334 -1.009130 1.627587 1.033123 -1.454953 1.869310 0.564352 -0.990362 0.183853 -0.040705 0.471495 0.845016 -0.055272 -0.395340 0.229561 -0.309671 0.042430 -0.172341 -0.582692 -0.526883 -0.970017 0.047138 -0.616358 0.207388 0.112309 0.157398 -0.722995 0.556356 -0.560003 0.257622 0.112980 -0.367147 0.213799 -0.093517 -0.101010 -0.299173 0.233383 0.015376 0.661861 -0.397483 -0.007674 -0.020725 0.580397 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 0.466515 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 1.732827 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 1.955677 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 1.722814 -0.611041 -0.435773 -0.440926 1.075912 -0.769976 -0.626017 -0.285797 -0.692565 -0.628416 -0.314340 1.137342 -0.379254 0.028423 2.481339 1.127953 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.556890 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.124128 -0.559184 1.300123 0.280635 -0.473019 -0.410698 1.935219 1.932746 0.273924 0.496819 0.454982 -0.321846 -0.271187 -0.022674 0.229538 -0.309659 -0.764700 -0.227411 0.404105 -0.526884 -0.507799 -0.278604 -0.144944 -0.009012 0.363246 0.280423 0.120964 -0.028294 -0.518273 0.344213 0.193657 0.126058 0.612544 0.221334 0.373675 0.145739 0.292756 0.069652 0.570570 -0.326143 0.466217 1.718590 0.827571 0.553168 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.104345 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.374052 1.580319 1.135685 -0.511968 -0.308607 1.482744 -0.104126 -0.884527 -0.458430 1.790059 -0.213201 0.102084 -0.535127 -0.661160 -0.922850 1.841899 1.675814 -0.435773 -0.440926 -0.455591 -0.769976 0.624142 -0.285797 -0.688087 -0.623190 1.992128 0.400658 -0.388534 1.465670 -0.056724 1.127953 0.963863 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 1.634474 -0.362143 1.951090 -0.556890 0.055666 0.318437 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 1.942572 -0.213201 -0.213201 4.690416 -0.646874 0.627969 -1.587382 0.992529 1.213578 0.439482 -1.197707 -0.877851
30643 1.123589 -0.692988 0.383419 1.247929 -0.442022 0.846034 -4.682939 2.367128 -1.323482 -1.104288 -0.005795 -0.526875 -0.849974 -0.013828 -0.395900 0.628824 -0.049221 0.413700 0.821080 -1.196554 1.157294 1.099306 0.897182 1.206775 1.178708 0.668380 1.196305 0.916772 1.159312 0.861817 -1.574774 0.284577 0.538947 0.433550 -0.359876 0.373629 2.626266 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.773090 1.969038 -0.480351 -0.694405 0.109427 -0.882977 -0.432331 -0.495561 -0.366786 -0.695145 1.832828 3.240370 -0.482124 -0.383059 0.880095 -0.458430 -0.465588 -0.213201 -0.131058 -0.535127 -0.66116 1.686452 -0.621218 0.379705 1.713726 2.359360 -0.455591 -0.769976 0.487402 -0.285797 -0.645847 1.867884 0.087145 0.542836 1.774819 -0.218804 -0.522169 -1.727845 0.040161 -0.222925 -0.213201 2.179449 -0.308607 1.397391 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.036322 -0.362143 -0.160777 1.272892 1.092159 1.192981 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.970825 0.542707 -0.508982 0.070390 0.725607 -0.834255 -0.508966 0.575880 -0.196363 -1.144174 0.263960 -0.056770 -0.409990 0.000656 0.028134 -0.199915 -1.248978 -1.218664 -0.661636 -0.526379 -0.271923 0.069844 0.109885 -0.172745 0.256753 -0.437180 -0.085041 0.534017 -0.174262 -0.109797 -0.229347 0.015683 -0.111461 -0.350344 -0.210248 -0.401559 -0.290374 -0.463418 -0.547747 -0.348088 0.224335 0.361706 0.487383 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -0.288416 0.677296 -0.694405 0.858350 0.487224 -0.432331 -0.495561 0.606766 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 0.732822 -0.213201 0.556288 0.561766 1.556719 1.830379 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.899668 1.540314 -0.410105 -2.063646 -0.509368 -0.662030 -0.522169 0.037557 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 0.799076 -0.362143 0.413793 -0.556890 -0.278572 -0.274281 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.402920 -0.005825 -0.734232 1.563723 0.183675 0.200628 -0.163011 -0.363060 0.273924 0.496819 0.454982 -0.321846 -0.271187 -0.022674 0.229538 -0.309659 -0.764700 -0.227411 0.404105 -0.526884 -0.507799 -0.278604 -0.144944 -0.009012 0.363246 0.280423 0.120964 -0.028294 -0.518273 0.344213 0.193657 0.126058 0.612544 0.221334 0.373675 0.145739 0.292756 0.069652 0.570570 -0.326143 0.466217 1.718590 0.827571 0.553168 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.104345 1.365567 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.374052 1.580319 1.135685 -0.511968 -0.308607 1.482744 -0.104126 -0.884527 -0.458430 1.790059 -0.213201 0.102084 -0.535127 -0.66116 -0.922850 1.841899 1.675814 -0.435773 -0.440926 -0.455591 -0.769976 0.624142 -0.285797 -0.688087 -0.623190 1.992128 0.400658 -0.388534 1.465670 -0.056724 1.127953 0.963863 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 1.634474 -0.362143 1.951090 -0.556890 0.055666 0.318437 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 1.942572 -0.213201 -0.213201 4.690416 -0.646874 0.627969 -1.587382 0.992529 1.213578 0.439482 -1.197707 -0.877851 -0.680115 0.536545 0.158193 -0.369303 -0.394568 -0.347487 0.037668 -0.205110 -1.033743 -1.273733 -1.372129 -0.525782 0.115873 0.346261 0.398995 -0.516138 -0.084662 -3.545366 -0.722995 0.822870 -0.281516 -0.614485 -0.699568 -0.367147 -0.688851 -0.806254 -0.744794 -0.902577 -0.612948 -0.758300 -0.547747 -0.397483 -0.269302 -0.442263 0.200980 0.373629 -0.113045 -0.213201 -0.308607 1.500960 1.050911 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.110102 0.858350 0.487224 -0.432331 -0.495561 -0.366786 -0.695145 -0.511968 -0.308607 -0.482124 0.774640 0.433147 -0.458430 -0.324416 -0.213201 0.556288 1.741627 1.556719 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 0.858162 1.474811 -0.483206 -2.651958 -0.590457 -0.936726 -0.522169 -0.429755 0.040161 0.509544 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 0.301852 -0.387298 -0.036322 -0.362143 -0.377578 -0.55689 -0.772086 -0.727688 3.240370 -0.308607 -0.291386 2.179449 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.638014 -0.373643 -0.481565 0.448823 -0.233181 0.343489 0.268100 0.182050 -2.659736 -0.303815 0.426781 -0.653267 -1.825779 -1.787914 0.192416 -0.289431 1.656688 0.268215 -0.661636 -0.527120 3.378062 -3.610682 3.529379 -2.476702 3.820823 2.339301 -1.599718 -0.777419 -1.078909 -1.994004 -1.984875 -1.719703 -1.901068 -1.763427 -1.790074 -1.882295 -1.312462 -1.397762 0.661861 -0.447122 -1.982221 -1.750939 0.162382 ... -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.556890 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.262653 -0.624313 1.917789 0.258844 -0.599497 -0.498142 2.071889 1.837445 0.183853 -0.040705 0.471495 0.845016 -0.055272 -0.395340 0.229561 -0.309671 0.042430 -0.172341 -0.582692 -0.526883 -0.970017 0.047138 -0.616358 0.207388 0.112309 0.157398 -0.722995 0.556356 -0.560003 0.257622 0.112980 -0.367147 0.213799 -0.093517 -0.101010 -0.299173 0.233383 0.015376 0.661861 -0.397483 -0.007674 -0.020725 0.580397 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 0.973850 0.466515 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 1.434128 1.732827 -0.695145 -0.511968 -0.308607 -0.482124 -1.373429 -0.884527 2.235426 1.955677 -0.213201 -0.945646 -0.535127 -0.66116 -0.922850 1.722814 -0.611041 -0.435773 -0.440926 1.075912 -0.769976 -0.626017 -0.285797 -0.692565 -0.628416 -0.314340 1.137342 -0.379254 0.028423 2.481339 1.127953 -0.883541 -0.955395 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 0.225126 -0.556890 1.215885 -0.020405 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 0.124128 -0.559184 1.300123 0.280635 -0.473019 -0.410698 1.935219 1.932746 -0.649584 2.010995 0.251582 -0.617142 0.943337 -0.694539 0.242444 -0.316691 0.445994 -0.103504 -0.928071 -0.526259 -0.043918 0.556229 -0.562001 -0.523909 -1.453514 -1.038963 -0.702544 0.833573 -0.648508 -0.641610 -0.724841 -0.737085 -0.712697 -0.825083 -0.563530 -0.732682 -0.788433 -0.918720 0.570570 -0.418096 -0.521056 -0.836672 -1.023990 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -0.224260 -0.480351 1.021053 0.109427 -0.882977 -0.432331 -0.495561 0.634977 -0.695145 -0.511968 -0.308607 -0.482124 0.800756 -0.884527 -0.458430 -0.241607 -0.213201 -0.131058 0.586510 -0.661160 -0.922850 -0.621218 -0.611041 0.790873 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.733998 1.616607 -0.450977 -0.081738 -0.543976 -1.334746 0.505208 0.738526 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 2.238608 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.614352 -0.556890 -0.890879 -0.783861 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.445444 -0.776063 1.113066 -1.254281 -0.843553 -0.133065 0.327619 -0.289030 -1.339938 0.444870 0.253486 -0.901151 -0.152214 -1.042683 0.241000 -0.315904 0.964863 0.693038 -0.357138 -0.526403 0.969109 -0.533923 0.709041 -1.215466 -0.276245 -0.137725 -0.684106 0.233728 -0.814932 -1.262735 -1.303547 -1.022430 -1.225889 -1.230302 -1.129809 -1.263443 -1.114134 -1.216461 0.570570 -0.429222 -1.014693 -0.929799 -0.845377 0.373629 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 -0.647398 -1.107502 -0.480351 1.162392 0.109427 -0.882977 -0.432331 -0.495561 -1.340339 1.153064 -0.511968 -0.308607 -0.482124 0.898293 -0.884527 -0.458430 -1.381653 -0.213201 -0.131058 0.678924 -0.661160 -0.922850 -0.621218 -0.611041 -0.435773 -0.440926 -0.455591 -0.769976 0.487402 -0.285797 -0.768318 1.437885 -0.514615 -0.077221 -0.532560 -0.462400 -0.911354 0.349099 0.040161 -0.222925 -0.213201 -0.458831 -0.308607 -0.493197 -0.213201 0.331133 0.163663 -0.329293 -0.387298 -0.871719 -0.362143 -0.733913 -0.556890 -1.382368 -1.235107 -0.308607 3.240370 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -1.083655 -0.827633 0.300280 0.059408 -0.982852 1.131568 0.130546 -1.250576 1.065996 0.050359 0.433525 1.825444 -0.433124 0.448946 0.231079 -0.310499 -1.168265 -0.723037 0.404105 -0.526883 -0.818551 -0.069808 -0.311742 0.192350 -0.048318 0.413831 0.726870 -1.313071 0.839266 0.835321 0.651226 0.905222 1.023632 0.545931 1.014313 0.746194 1.113758 0.820173 -1.118318 0.057815 0.147277 0.399290 -0.669480 -1.088274 -0.113045 -0.213201 -0.308607 -0.521596 -0.682582 -0.458413 -0.308393 2.903823 0.421299 -0.480351 -0.694405 -0.688230 -0.882977 -0.432331 -0.495561 -0.366786 -0.695145 2.309694 -0.308607 -0.482124 -1.373429 0.880095 -0.458430 -0.465588 -0.213201 -0.945646 -0.535127 -0.661160 -0.922850 0.598568 0.379705 -0.435773 -0.440926 2.899050 -0.769976 -0.626017 -0.285797 -0.648710 -0.570587 0.165606 0.349769 2.873511 -0.119319 -0.522169 -1.727845 -0.883541 -0.955395 -0.213201 2.179449 -0.308607 1.397391 -0.213201 -1.192079 -1.091089 -0.960437 -0.387298 -0.036322 -0.362143 -0.207483 1.272892 1.464603 1.029491 -0.308607 -0.308607 -0.291386 -0.458831 -0.213201 -0.428746 -0.291386 -0.213201 -0.213201 -0.213201 -0.099860 0.486760 -1.163556 0.319299 0.775477 -0.245278 -1.215224 -0.891051

30644 rows × 1740 columns

embedding_df=reduce_feature(encoded,'umap')
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/umap/umap_.py:1952: UserWarning: n_jobs value 1 overridden to 1 by setting random_state. Use no seed for parallelism.
  warn(
plot_2d_style(embedding_df,s=1,hue=df[SEQ_COL].str[7])

plot_2d_style(embedding_df,s=1,hue=group_hue,palette=tab20bc)
/tmp/ipykernel_7561/2523523824.py:7: UserWarning: The palette list has more values (24) than needed (9), which may not be intended.
  sns.scatterplot(data = X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)

plot_2d_style(embedding_df,s=1,hue=df[SEQ_COL].str[8],palette=tab20bc,hue_order=hue_order)

plot_2d_style(embedding_df,s=1,hue=df[SEQ_COL].str[4],palette=tab20bc,hue_order=hue_order)

plot_2d_style(embedding_df,s=1,hue=Qlabel)

A little bit more seperation in terms of +1P group

Onehot + physicochemical

comb = pd.concat([onehot,encoded],axis=1)
comb_emb=reduce_feature(comb,'umap')
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../umap/umap_.py:1952: UserWarning: n_jobs value 1 overridden to 1 by setting random_state. Use no seed for parallelism.
  warn(
plot_2d(comb_emb,s=1,hue=df[SEQ_COL].str[8]=="Q")

plot_2d(comb_emb,s=1,hue=df[SEQ_COL].str[8])

plot_2d(comb_emb,s=1,hue=df[SEQ_COL].str[7])

plot_2d(onehot_pos_emb,s=1,hue=df[SEQ_COL].str[8]=="Q")

No much difference with the physiochemical alone

PSPA motif encoded

Transformer based

Plot interactions: onehot + kinase features