from katlas.core import *
import pandas as pd
import joblib
# from sklearn import set_config
# set_config(transform_output='pandas')
Train
Setup
= Data.get_ks_unique() df
df
site_seq | site_source_all | substrate_gene | sub_site | O00141_SGK1 | O00238_BMPR1B | O00311_CDC7 | O00329_PIK3CD | O00418_EEF2K | O00443_PIK3C2A | ... | Q9Y2K2_SIK3 | Q9Y2U5_MAP3K2 | Q9Y3S1_WNK2 | Q9Y463_DYRK1B | Q9Y4K4_MAP4K5 | Q9Y572_RIPK3 | Q9Y5S2_CDC42BPB | Q9Y6E0_STK24 | Q9Y6M4_CSNK1G3 | Q9Y6R4_MAP3K4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | AAAAAAAAAVAAPPTAVGSLsGAEGVPVSsQPLPSQPW___ | SIGNOR|human_phosphoproteome|PSP|iPTMNet | MAZ | P56270_S460 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | AAAAAAASGGAQQRsHHAPMsPGssGGGGQPLARtPQPssP | PSP|human_phosphoproteome|EPSD|Sugiyama | ARID1A | O14497_S363 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | AAAAAAAVtAAstsYYGRDRsPLRRATAPVPTVGEGYGYGH | human_phosphoproteome|PSP|EPSD | RBM4 | Q9BWF3_S309 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | AAAAAVSRRRKAEYPRRRRssPsARPPDVPGQQPQAAKsPs | human_phosphoproteome|Sugiyama | ZFP91 | Q96JP5_S83 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | AAAAGAGKAEELHyPLGERRsDyDREALLGVQEDVDEyVKL | Sugiyama | RCN2 | Q14257_S37 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
29151 | ___________________MstVHEILCKLsLEGDHstPPs | SIGNOR|human_phosphoproteome|EPSD | ANXA2 | P07355_S2 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29152 | ___________________MsYRRELEKyRDLDEDEILGAL | human_phosphoproteome|PSP|EPSD | TMOD1 | P28289_S2 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29153 | ___________________MtAKMETtFYDDALNASFLPSE | SIGNOR|human_phosphoproteome|EPSD|PSP|GPS6 | JUN | P05412_T2 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29154 | ___________________MtSSyGHVLERQPALGGRLDsP | Sugiyama | PRRX1 | P54821_T2 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29155 | ___________________MttsQKHRDFVAEPMGEKPVGS | SIGNOR|human_phosphoproteome|EPSD|PSP|GPS6 | BANF1 | O75531_T2 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29156 rows × 459 columns
onehot_encode??
Signature: onehot_encode(sequences, transform_colname=True, n=20) Docstring: <no docstring> Source: def onehot_encode(sequences, transform_colname=True, n=20): encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=False) encoded_array = encoder.fit_transform([list(seq) for seq in sequences]) colnames = [x[1:] for x in encoder.get_feature_names_out()] if transform_colname: colnames = [f"{int(item.split('_', 1)[0]) - 20}{item.split('_', 1)[1]}" for item in colnames] encoded_df = pd.DataFrame(encoded_array, columns=colnames) return encoded_df File: ~/katlas/katlas/core.py Type: function
= onehot_encode(df['site_seq']) X
X
-20A | -20C | -20D | -20E | -20F | -20G | -20H | -20I | -20K | -20L | ... | 20R | 20S | 20T | 20V | 20W | 20Y | 20_ | 20s | 20t | 20y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
4 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
29151 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
29152 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29154 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29156 rows × 962 columns
= df.columns[4:]
kinase_cols =(df[kinase_cols]>0).astype(int) data
sum()>50).value_counts() (data.
True 320
False 135
Name: count, dtype: int64
=data.loc[:,data.sum()>50] # filter out kinases with less than 50 known substrates Y
from sklearn.model_selection import train_test_split
= train_test_split(X, Y, test_size=0.2, random_state=42) X_train, X_test, Y_train, Y_test
# Wrap XGBClassifier with MultiOutputClassifier
= MultiOutputClassifier(xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss'))
model model.fit(X_train, Y_train)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:23] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:31] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:50] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:40:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:27] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:31] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:41:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:01] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:27] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:31] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:42:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:01] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:23] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:27] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:57] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:43:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:01] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:23] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:27] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:50] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:57] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:44:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:01] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:27] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:31] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:50] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:45:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:31] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:57] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:46:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:01] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:23] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:50] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:47:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) Cell In[103], line 7 5 # Compute SHAP values for each label 6 for i, estimator in enumerate(model.estimators_): ----> 7 explainer = shap.Explainer(estimator, X_train) 8 shap_values = explainer(X_test) 9 if i ==10: break NameError: name 'shap' is not defined
'multioutput_xgb_model.pkl') joblib.dump(model,
['multioutput_xgb_model.pkl']
= joblib.load('multioutput_xgb_model.pkl') model
import shap
= shap.TreeExplainer(model.estimators_[46]) explainer
= explainer.shap_values(X) shap_values
shap_values.shape
(29156, 962)
= pd.DataFrame(shap_values,index=X.index,columns=X.columns) shap_df
str.contains('CDK1')] df.columns[df.columns.
Index(['O94921_CDK14', 'P06493_CDK1', 'P21127_CDK11B', 'Q00536_CDK16',
'Q07002_CDK18', 'Q14004_CDK13', 'Q15131_CDK10', 'Q96Q40_CDK15',
'Q9BWU1_CDK19', 'Q9NYV4_CDK12', 'Q9UQ88_CDK11A'],
dtype='object')
= 'P06493_CDK1' colname
get_prob??
Signature: get_prob( df: pandas.core.frame.DataFrame, col: str, aa_order=['P', 'G', 'A', 'C', 'S', 'T', 'V', 'I', 'L', 'M', 'F', 'Y', 'W', 'H', 'K', 'R', 'Q', 'N', 'D', 'E', 's', 't', 'y'], ) Source: def get_prob(df: pd.DataFrame, col: str, aa_order=[i for i in 'PGACSTVILMFYWHKRQNDEsty']): """Get the probability matrix of PSSM from phosphorylation site sequences.""" site = check_seq_df(df, col) site_array = np.array(site.apply(list).tolist()) seq_len = site_array.shape[1] position = list(range(-(seq_len // 2), (seq_len // 2)+1)) # add 1 because range do not include the final num site_df = pd.DataFrame(site_array, columns=position) melted = site_df.melt(var_name='Position', value_name='aa') grouped = melted.groupby(['Position', 'aa']).size().reset_index(name='Count') grouped = grouped[grouped.aa.isin(aa_order)].reset_index(drop=True) pivot_df = grouped.pivot(index='aa', columns='Position', values='Count').fillna(0) pssm_df = pivot_df / pivot_df.sum() pssm_df = pssm_df.reindex(index=aa_order, columns=position, fill_value=0) pssm_df = pssm_df.rename(index={'s': 'pS', 't': 'pT', 'y': 'pY'}) return pssm_df File: ~/katlas/katlas/core.py Type: function
= df.index[df[colname]==1] idxs
= shap_df.iloc[idxs].mean() flat_pssm
= (X*shap_df).mean()
flat_pssm_1 = ((1-X)*shap_df).mean() flat_pssm_0
= recover_pssm(flat_pssm_1)
pssm_1 = recover_pssm(flat_pssm_0) pssm_0
from katlas.plot import *
=(14,7)) plot_heatmap(pssm_0,figsize
=(14,7)) plot_heatmap(pssm_1,figsize
recover_pssm?
Signature: recover_pssm(flat_pssm: pandas.core.series.Series) Docstring: Recover 2D pssm from flat pssm Series File: ~/katlas/katlas/core.py Type: function
X.shape
(29156, 962)
shap.force_plot?
Signature: shap.force_plot( base_value, shap_values=None, features=None, feature_names=None, out_names=None, link='identity', plot_cmap='RdBu', matplotlib=False, show=True, figsize=(20, 3), ordering_keys=None, ordering_keys_time_format=None, text_rotation=0, contribution_threshold=0.05, ) Docstring: Visualize the given SHAP values with an additive force layout. Parameters ---------- base_value : float or shap.Explanation If a float is passed in, this is the reference value that the feature contributions start from. For SHAP values, it should be the value of ``explainer.expected_value``. However, it is recommended to pass in a SHAP :class:`.Explanation` object instead (``shap_values`` is not necessary in this case). shap_values : numpy.array Matrix of SHAP values (# features) or (# samples x # features). If this is a 1D array, then a single force plot will be drawn. If it is a 2D array, then a stacked force plot will be drawn. features : numpy.array Matrix of feature values (# features) or (# samples x # features). This provides the values of all the features, and should be the same shape as the ``shap_values`` argument. feature_names : list List of feature names (# features). out_names : str The name of the output of the model (plural to support multi-output plotting in the future). link : "identity" or "logit" The transformation used when drawing the tick mark labels. Using "logit" will change log-odds numbers into probabilities. plot_cmap : str or list[str] Color map to use. It can be a string (defaults to ``RdBu``) or a list of hex color strings. matplotlib : bool Whether to use the default Javascript output, or the (less developed) matplotlib output. Using matplotlib can be helpful in scenarios where rendering Javascript/HTML is inconvenient. Defaults to False. show : bool Whether :external+mpl:func:`matplotlib.pyplot.show()` is called before returning. Setting this to ``False`` allows the plot to be customized further after it has been created. Only applicable when ``matplotlib`` is set to True. figsize : Figure size of the matplotlib output. contribution_threshold : float Controls the feature names/values that are displayed on force plot. Only features that the magnitude of their shap value is larger than min_perc * (sum of all abs shap values) will be displayed. File: /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/shap/plots/_force.py Type: function
0],X_train.iloc[0],matplotlib=True) shap.force_plot(explainer.expected_value, shap_values[
="bar") shap.summary_plot(shap_values, X, plot_type
shap.summary_plot(shap_values, X)
explainer.expected_value
-3.6888542
= shap.Explainer(model.estimators_[46], X_train)
explainer = explainer(X_test)
shap_test # shap_train = explainer(X_train)
shap_test
.values =
array([[ 0.00206763, 0. , -0.00956931, ..., 0.00070516,
0. , 0. ],
[ 0.00206763, 0. , 0.00141108, ..., 0.00027887,
0. , 0. ],
[ 0.00206763, 0. , 0.00188144, ..., 0.00070516,
0. , 0. ],
...,
[ 0.00206763, 0. , 0.00188144, ..., 0.00070516,
0. , 0. ],
[ 0.00581243, 0. , 0.00188144, ..., 0.00070516,
0. , 0. ],
[ 0.00206763, 0. , 0.00188144, ..., 0.00070516,
0. , 0. ]])
.base_values =
array([-5.57500997, -5.57500997, -5.57500997, ..., -5.57500997,
-5.57500997, -5.57500997])
.data =
array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
import shap
# Compute SHAP values for each label
for i, estimator in enumerate(model.estimators_):
= shap.Explainer(estimator, X_train)
explainer = explainer(X_test)
shap_values if i ==10: break
= pd.DataFrame(
shap_df
shap_values.values,=X_test.columns,
columns=X_test.index
index )
10][Y_test.iloc[:,10]==1] Y_test.iloc[:,
16979 1
14709 1
2275 1
8769 1
27218 1
..
20779 1
960 1
7986 1
2554 1
23184 1
Name: O15111_CHUK, Length: 98, dtype: int64
shap_df
-20A | -20C | -20D | -20E | -20F | -20G | -20H | -20I | -20K | -20L | ... | 20R | 20S | 20T | 20V | 20W | 20Y | 20_ | 20s | 20t | 20y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16025 | -0.001766 | 0.0 | 0.0 | -0.008262 | 0.0 | 0.000000 | -0.007991 | 0.0 | 0.0 | 0.015426 | ... | 0.008585 | 0.043172 | 0.005846 | -0.008903 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.012251 |
15040 | -0.010175 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | -0.002976 | 0.0 | 0.0 | -0.278704 | ... | 0.009266 | 0.089959 | 0.004836 | -0.045084 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.010704 |
19178 | -0.001143 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | -0.003325 | 0.0 | 0.0 | 0.010434 | ... | 0.003524 | 0.075065 | 0.001692 | 0.046648 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.010476 |
17659 | -0.001766 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | -0.007991 | 0.0 | 0.0 | 0.015426 | ... | -0.000838 | 0.091592 | 0.005846 | -0.010654 | 0.0 | 0.0 | 0.0 | 0.010562 | 0.0 | -0.010916 |
16145 | -0.010175 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | -0.012346 | 0.0 | 0.0 | 0.015426 | ... | -0.001271 | 0.083283 | 0.005846 | -0.045084 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.012832 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
8663 | -0.001088 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.328290 | -0.007991 | 0.0 | 0.0 | 0.011210 | ... | 0.009266 | 0.033781 | 0.005846 | -0.011177 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.012008 |
24778 | -0.001766 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | -0.007991 | 0.0 | 0.0 | 0.011116 | ... | 0.009266 | 0.083086 | 0.005846 | -0.010364 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.012143 |
16483 | -0.001766 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | -0.007991 | 0.0 | 0.0 | 0.010868 | ... | -0.003765 | 0.091999 | 0.005846 | -0.011055 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.011432 |
24180 | -0.002254 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | -0.007991 | 0.0 | 0.0 | 0.015426 | ... | 0.003901 | 0.092182 | 0.005846 | 0.436673 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.011381 |
8200 | -0.001766 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.021635 | -0.007991 | 0.0 | 0.0 | 0.011210 | ... | -0.000513 | 0.070115 | 0.002152 | -0.012110 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | -0.012159 |
5832 rows × 962 columns
10] Y_train.iloc[:,
22535 0
20205 0
6352 0
5638 0
2075 0
..
21575 0
5390 0
860 0
15795 0
23654 0
Name: O15111_CHUK, Length: 23324, dtype: int64
shap_values
.values =
array([[-0.00176575, 0. , 0. , ..., 0. ,
0. , -0.01225108],
[-0.01017473, 0. , 0. , ..., 0. ,
0. , -0.01070447],
[-0.00114341, 0. , 0. , ..., 0. ,
0. , -0.01047641],
...,
[-0.00176575, 0. , 0. , ..., 0. ,
0. , -0.01143211],
[-0.00225384, 0. , 0. , ..., 0. ,
0. , -0.01138087],
[-0.00176575, 0. , 0. , ..., 0. ,
0. , -0.01215919]])
.base_values =
array([-6.18386969, -6.18386969, -6.18386969, ..., -6.18386969,
-6.18386969, -6.18386969])
.data =
array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
X_test
-20A | -20C | -20D | -20E | -20F | -20G | -20H | -20I | -20K | -20L | ... | 20R | 20S | 20T | 20V | 20W | 20Y | 20_ | 20s | 20t | 20y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
15040 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
19178 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
17659 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
16145 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
8663 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
24778 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
16483 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
24180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
8200 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5832 rows × 962 columns
=False)
shap.summary_plot(shap_values, X_test, showf'SHAP Summary for Label {i}')
plt.title( plt.show()
import xgboost as xgb
# Initialize the classifier
= xgb.XGBClassifier(objective='binary:logistic', eval_metric='logloss', use_label_encoder=False)
model
# Fit the model on multi-label data
model.fit(X_train, Y_train)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/xgboost/training.py:183: UserWarning: [01:33:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric='logloss', feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric='logloss', feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, ...)
for i, estimator in enumerate(model.estimators_):
# Compute SHAP values for label i
= shap.Explainer(estimator, X_train)
explainer = explainer(X_test)
shap_values
# Visualize SHAP values for label i
=10)
shap.plots.beeswarm(shap_values, max_displayif i ==10: break
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[100], line 1 ----> 1 for i, estimator in enumerate(model.estimators_): 2 # Compute SHAP values for label i 3 explainer = shap.Explainer(estimator, X_train) 4 shap_values = explainer(X_test) AttributeError: 'XGBClassifier' object has no attribute 'estimators_'
import shap
# Create a SHAP explainer
= shap.Explainer(model, X_train)
explainer
# Compute SHAP values for the test set
= explainer(X_test) shap_values
--------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) Cell In[99], line 1 ----> 1 import shap 3 # Create a SHAP explainer 4 explainer = shap.Explainer(model, X_train) ModuleNotFoundError: No module named 'shap'
shap.summary_plot(shap_values, X_test)
"feature_name", shap_values.values, X_test) shap.dependence_plot(
0], X_test[0]) shap.force_plot(explainer.expected_value, shap_values.values[
from sklearn.metrics import hamming_loss, accuracy_score, f1_score
# Predict on the test set
= model.predict(X_test)
Y_pred
# Compute evaluation metrics
print("Hamming Loss:", hamming_loss(Y_test, Y_pred))
print("Subset Accuracy:", accuracy_score(Y_test, Y_pred))
print("F1 Score (Micro):", f1_score(Y_test, Y_pred, average='micro'))
from sklearn.multioutput import MultiOutputClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
= KNeighborsClassifier(n_neighbors=5,n_jobs=-1)
base # base = LogisticRegression(max_iter=1000)
= MultiOutputClassifier(base)
clf clf.fit(X_train, Y_train)
MultiOutputClassifier(estimator=KNeighborsClassifier(n_jobs=-1))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
MultiOutputClassifier(estimator=KNeighborsClassifier(n_jobs=-1))
KNeighborsClassifier(n_jobs=-1)
KNeighborsClassifier(n_jobs=-1)
= clf.predict(X_test)
Y_pred # Y_pred = clf.predict_proba(X_test)
= pd.DataFrame(Y_pred) out
from sklearn.metrics import multilabel_confusion_matrix
Y_pred
array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]])
= multilabel_confusion_matrix(Y_test.values, Y_pred) cm
import seaborn as sns
for i in range(num_classes):
=(4, 4))
plt.figure(figsize= cm[i]
c_matrix ='nearest', cmap=plt.cm.Blues)
plt.imshow(c_matrix, interpolationf'Confusion Matrix for {class_names[i]}')
plt.title(0, 1], ['Predicted 0', 'Predicted 1'])
plt.xticks([0, 1], ['Actual 0', 'Actual 1'])
plt.yticks([
for j in range(2):
for k in range(2):
format(c_matrix[j, k], 'd'),
plt.text(k, j, ="center", va="center",
ha="white" if c_matrix[j, k] > c_matrix.max() / 2. else "black")
color
plt.tight_layout()
plt.show()if i==20: break
import matplotlib.pyplot as plt
import numpy as np
# Assuming 'cm' is your multilabel confusion matrix
= cm.shape[0]
num_classes = [f'Class {i}' for i in range(num_classes)] # Replace with actual class names if available
class_names
= plt.subplots(nrows=1, ncols=num_classes, figsize=(5 * num_classes, 4))
fig, axes
for i in range(num_classes):
= axes[i] if num_classes > 1 else axes
ax = cm[i]
c_matrix = ax.imshow(c_matrix, interpolation='nearest', cmap=plt.cm.Blues)
im f'Confusion Matrix for {class_names[i]}')
ax.set_title(0, 1])
ax.set_xticks([0, 1])
ax.set_yticks(['Predicted 0', 'Predicted 1'])
ax.set_xticklabels(['Actual 0', 'Actual 1'])
ax.set_yticklabels([
# Loop over data dimensions and create text annotations.
for j in range(2):
for k in range(2):
format(c_matrix[j, k], 'd'),
ax.text(k, j, ="center", va="center",
ha="white" if c_matrix[j, k] > c_matrix.max() / 2. else "black")
colorbreak
plt.tight_layout() plt.show()
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[95], line 28 23 ax.text(k, j, format(c_matrix[j, k], 'd'), 24 ha="center", va="center", 25 color="white" if c_matrix[j, k] > c_matrix.max() / 2. else "black") 26 break ---> 28 plt.tight_layout() 29 plt.show() File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/pyplot.py:2584, in tight_layout(pad, h_pad, w_pad, rect) 2576 @_copy_docstring_and_deprecators(Figure.tight_layout) 2577 def tight_layout( 2578 *, (...) 2582 rect: tuple[float, float, float, float] | None = None, 2583 ) -> None: -> 2584 gcf().tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/figure.py:3540, in Figure.tight_layout(self, pad, h_pad, w_pad, rect) 3538 previous_engine = self.get_layout_engine() 3539 self.set_layout_engine(engine) -> 3540 engine.execute(self) 3541 if previous_engine is not None and not isinstance( 3542 previous_engine, (TightLayoutEngine, PlaceHolderLayoutEngine) 3543 ): 3544 _api.warn_external('The figure layout has changed to tight') File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/layout_engine.py:181, in TightLayoutEngine.execute(self, fig) 164 """ 165 Execute tight_layout. 166 (...) 178 .pyplot.tight_layout 179 """ 180 info = self._params --> 181 renderer = fig._get_renderer() 182 with getattr(renderer, "_draw_disabled", nullcontext)(): 183 kwargs = get_tight_layout_figure( 184 fig, fig.axes, get_subplotspec_list(fig.axes), renderer, 185 pad=info['pad'], h_pad=info['h_pad'], w_pad=info['w_pad'], 186 rect=info['rect']) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/figure.py:2754, in Figure._get_renderer(self) 2752 def _get_renderer(self): 2753 if hasattr(self.canvas, 'get_renderer'): -> 2754 return self.canvas.get_renderer() 2755 else: 2756 return _get_renderer(self) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:398, in FigureCanvasAgg.get_renderer(self) 396 reuse_renderer = (self._lastKey == key) 397 if not reuse_renderer: --> 398 self.renderer = RendererAgg(w, h, self.figure.dpi) 399 self._lastKey = key 400 return self.renderer File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:70, in RendererAgg.__init__(self, width, height, dpi) 68 self.width = width 69 self.height = height ---> 70 self._renderer = _RendererAgg(int(width), int(height), dpi) 71 self._filter_renderers = [] 73 self._update_methods() ValueError: Image size of 160000x400 pixels is too large. It must be less than 2^16 in each direction.
Error in callback <function _draw_all_if_interactive> (for post_execute), with arguments args (),kwargs {}:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/pyplot.py:197, in _draw_all_if_interactive() 195 def _draw_all_if_interactive() -> None: 196 if matplotlib.is_interactive(): --> 197 draw_all() File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/_pylab_helpers.py:132, in Gcf.draw_all(cls, force) 130 for manager in cls.get_all_fig_managers(): 131 if force or manager.canvas.figure.stale: --> 132 manager.canvas.draw_idle() File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs) 1891 if not self._is_idle_drawing: 1892 with self._idle_draw_cntx(): -> 1893 self.draw(*args, **kwargs) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:383, in FigureCanvasAgg.draw(self) 381 def draw(self): 382 # docstring inherited --> 383 self.renderer = self.get_renderer() 384 self.renderer.clear() 385 # Acquire a lock on the shared font cache. File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:398, in FigureCanvasAgg.get_renderer(self) 396 reuse_renderer = (self._lastKey == key) 397 if not reuse_renderer: --> 398 self.renderer = RendererAgg(w, h, self.figure.dpi) 399 self._lastKey = key 400 return self.renderer File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:70, in RendererAgg.__init__(self, width, height, dpi) 68 self.width = width 69 self.height = height ---> 70 self._renderer = _RendererAgg(int(width), int(height), dpi) 71 self._filter_renderers = [] 73 self._update_methods() ValueError: Image size of 160000x400 pixels is too large. It must be less than 2^16 in each direction.
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/IPython/core/formatters.py:340, in BaseFormatter.__call__(self, obj) 338 pass 339 else: --> 340 return printer(obj) 341 # Finally look for special method names 342 method = get_real_method(obj, self.print_method) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/IPython/core/pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs) 149 from matplotlib.backend_bases import FigureCanvasBase 150 FigureCanvasBase(fig) --> 152 fig.canvas.print_figure(bytes_io, **kw) 153 data = bytes_io.getvalue() 154 if fmt == 'svg': File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:2156, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists, backend, **kwargs) 2151 layout_engine = self.figure.get_layout_engine() 2152 if layout_engine is not None or bbox_inches == "tight": 2153 # we need to trigger a draw before printing to make sure 2154 # CL works. "tight" also needs a draw to get the right 2155 # locations: -> 2156 renderer = _get_renderer( 2157 self.figure, 2158 functools.partial( 2159 print_method, orientation=orientation) 2160 ) 2161 # we do this instead of `self.figure.draw_without_rendering` 2162 # so that we can inject the orientation 2163 with getattr(renderer, "_draw_disabled", nullcontext)(): File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:1642, in _get_renderer(figure, print_method) 1639 print_method = stack.enter_context( 1640 figure.canvas._switch_canvas_and_return_print_method(fmt)) 1641 try: -> 1642 print_method(io.BytesIO()) 1643 except Done as exc: 1644 renderer, = exc.args File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backend_bases.py:2043, in FigureCanvasBase._switch_canvas_and_return_print_method.<locals>.<lambda>(*args, **kwargs) 2039 optional_kws = { # Passed by print_figure for other renderers. 2040 "dpi", "facecolor", "edgecolor", "orientation", 2041 "bbox_inches_restore"} 2042 skip = optional_kws - {*inspect.signature(meth).parameters} -> 2043 print_method = functools.wraps(meth)(lambda *args, **kwargs: meth( 2044 *args, **{k: v for k, v in kwargs.items() if k not in skip})) 2045 else: # Let third-parties do as they see fit. 2046 print_method = meth File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:497, in FigureCanvasAgg.print_png(self, filename_or_obj, metadata, pil_kwargs) 450 def print_png(self, filename_or_obj, *, metadata=None, pil_kwargs=None): 451 """ 452 Write the figure to a PNG file. 453 (...) 495 *metadata*, including the default 'Software' key. 496 """ --> 497 self._print_pil(filename_or_obj, "png", pil_kwargs, metadata) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:445, in FigureCanvasAgg._print_pil(self, filename_or_obj, fmt, pil_kwargs, metadata) 440 def _print_pil(self, filename_or_obj, fmt, pil_kwargs, metadata=None): 441 """ 442 Draw the canvas, then save it using `.image.imsave` (to which 443 *pil_kwargs* and *metadata* are forwarded). 444 """ --> 445 FigureCanvasAgg.draw(self) 446 mpl.image.imsave( 447 filename_or_obj, self.buffer_rgba(), format=fmt, origin="upper", 448 dpi=self.figure.dpi, metadata=metadata, pil_kwargs=pil_kwargs) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:383, in FigureCanvasAgg.draw(self) 381 def draw(self): 382 # docstring inherited --> 383 self.renderer = self.get_renderer() 384 self.renderer.clear() 385 # Acquire a lock on the shared font cache. File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:398, in FigureCanvasAgg.get_renderer(self) 396 reuse_renderer = (self._lastKey == key) 397 if not reuse_renderer: --> 398 self.renderer = RendererAgg(w, h, self.figure.dpi) 399 self._lastKey = key 400 return self.renderer File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/matplotlib/backends/backend_agg.py:70, in RendererAgg.__init__(self, width, height, dpi) 68 self.width = width 69 self.height = height ---> 70 self._renderer = _RendererAgg(int(width), int(height), dpi) 71 self._filter_renderers = [] 73 self._update_methods() ValueError: Image size of 160000x400 pixels is too large. It must be less than 2^16 in each direction.
<Figure size 160000x400 with 320 Axes>
=False) sns.heatmap(cm, annot
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[94], line 1 ----> 1 sns.heatmap(cm, annot=False) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/seaborn/matrix.py:446, in heatmap(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, xticklabels, yticklabels, mask, ax, **kwargs) 365 """Plot rectangular data as a color-encoded matrix. 366 367 This is an Axes-level function and will draw the heatmap into the (...) 443 444 """ 445 # Initialize the plotter object --> 446 plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt, 447 annot_kws, cbar, cbar_kws, xticklabels, 448 yticklabels, mask) 450 # Add the pcolormesh kwargs here 451 kwargs["linewidths"] = linewidths File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/seaborn/matrix.py:110, in _HeatMapper.__init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask) 108 else: 109 plot_data = np.asarray(data) --> 110 data = pd.DataFrame(plot_data) 112 # Validate the mask and convert to DataFrame 113 mask = _matrix_mask(data, mask) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/pandas/core/frame.py:827, in DataFrame.__init__(self, data, index, columns, dtype, copy) 816 mgr = dict_to_mgr( 817 # error: Item "ndarray" of "Union[ndarray, Series, Index]" has no 818 # attribute "name" (...) 824 copy=_copy, 825 ) 826 else: --> 827 mgr = ndarray_to_mgr( 828 data, 829 index, 830 columns, 831 dtype=dtype, 832 copy=copy, 833 typ=manager, 834 ) 836 # For data is list-like, or Iterable (will consume into list) 837 elif is_list_like(data): File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/pandas/core/internals/construction.py:314, in ndarray_to_mgr(values, index, columns, dtype, copy, typ) 308 _copy = ( 309 copy_on_sanitize 310 if (dtype is None or astype_is_view(values.dtype, dtype)) 311 else False 312 ) 313 values = np.array(values, copy=_copy) --> 314 values = _ensure_2d(values) 316 else: 317 # by definition an array here 318 # the dtypes will be coerced to a single dtype 319 values = _prep_ndarraylike(values, copy=copy_on_sanitize) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/pandas/core/internals/construction.py:592, in _ensure_2d(values) 590 values = values.reshape((values.shape[0], 1)) 591 elif values.ndim != 2: --> 592 raise ValueError(f"Must pass 2-d input. shape={values.shape}") 593 return values ValueError: Must pass 2-d input. shape=(320, 2, 2)
# Create a heatmap
=(8+4, 6+4))
plt.figure(figsize=False, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
sns.heatmap(cm, annot"Predicted Label")
plt.xlabel("True Label")
plt.ylabel("Confusion Matrix") plt.title(
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
5827 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5828 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5829 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5830 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5831 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5832 rows × 327 columns
from sklearn.preprocessing import MultiLabelBinarizer
= MultiLabelBinarizer()
mlb = mlb.fit_transform(train['kinase_gene'])
y
# Save the list of kinase classes
= mlb.classes_ kinase_classes
len(kinase_classes)
452
K-mer
import umap
from collections import Counter
from sklearn.preprocessing import StandardScaler
def extract_kmers(peptides, k):
"""Generate k-mer frequency feature vectors from a list of peptide sequences."""
= []
all_kmers = []
feature_vectors
# Collect all k-mers to create a global vocabulary
for peptide in peptides:
= [peptide[i:i+k] for i in range(len(peptide) - k + 1)]
kmers
all_kmers.extend(kmers)
= list(set(all_kmers)) # Unique k-mers as features
unique_kmers = {kmer: i for i, kmer in enumerate(unique_kmers)}
kmer_dict
# Generate feature vectors
for peptide in peptides:
= [peptide[i:i+k] for i in range(len(peptide) - k + 1)]
kmers = Counter(kmers)
kmer_counts = np.zeros(len(unique_kmers))
vector
for kmer, count in kmer_counts.items():
= count
vector[kmer_dict[kmer]]
feature_vectors.append(vector)
return np.array(feature_vectors), unique_kmers
= df[SEQ_COL].tolist() peptides
= 1
k = extract_kmers(peptides, k)
feature_matrix, kmer_labels
# Normalize features
= StandardScaler()
scaler = scaler.fit_transform(feature_matrix) feature_matrix_scaled
=['kmer1_'+i for i in kmer_labels] feature_matrix_scaled.columns
feature_matrix_scaled.head()
kmer1__ | kmer1_W | kmer1_I | kmer1_H | kmer1_S | kmer1_L | kmer1_Q | kmer1_V | kmer1_t | kmer1_E | ... | kmer1_R | kmer1_A | kmer1_M | kmer1_F | kmer1_y | kmer1_Y | kmer1_C | kmer1_P | kmer1_N | kmer1_T | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -0.292368 | -0.534618 | -0.381885 | 0.185877 | 0.705791 | 1.538938 | -1.153188 | -1.372517 | -0.827500 | 3.041615 | ... | -0.323779 | 1.174198 | -0.811313 | -1.005910 | -0.722063 | -0.628547 | 1.630311 | -1.163877 | -0.330899 | -0.183614 |
1 | -0.292368 | -0.534618 | 0.350920 | 2.264674 | -0.385998 | 0.475219 | 0.139184 | -0.067668 | 1.667494 | 0.357542 | ... | -1.372446 | -0.881089 | -0.811313 | 0.732836 | 0.332195 | -0.628547 | 1.630311 | -0.291796 | 0.437719 | 0.611965 |
2 | -0.292368 | -0.534618 | 0.350920 | 2.264674 | -0.931893 | 0.475219 | -0.507002 | -0.067668 | 1.667494 | 0.357542 | ... | -1.372446 | -0.881089 | -0.811313 | 0.732836 | 0.332195 | 0.515607 | 1.630311 | 0.144245 | 0.437719 | 0.611965 |
3 | -0.292368 | -0.534618 | -0.381885 | 0.185877 | -0.931893 | -0.588501 | -1.153188 | 1.237181 | -0.827500 | 0.804887 | ... | -0.848113 | 0.660376 | -0.811313 | 0.732836 | -0.722063 | -0.628547 | -0.608818 | 1.016327 | 0.437719 | 0.611965 |
4 | -0.292368 | -0.534618 | -0.381885 | 0.185877 | -0.931893 | -0.588501 | -1.153188 | 1.237181 | -0.827500 | 0.804887 | ... | -1.372446 | 1.174198 | -0.811313 | 2.471583 | -0.722063 | 0.515607 | -0.608818 | 0.580286 | -0.330899 | 0.611965 |
5 rows × 24 columns
One-hot encode
x0_A | x0_C | x0_D | x0_E | x0_F | x0_G | x0_H | x0_I | x0_K | x0_L | ... | x40_R | x40_S | x40_T | x40_V | x40_W | x40_Y | x40__ | x40_s | x40_t | x40_y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
29151 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29152 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29153 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29154 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29156 rows × 962 columns
# features= pd.concat([onehot,feature_matrix_scaled],axis=1)
Need to modify non-canonical
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
from sklearn.metrics import classification_report, confusion_matrix
= LabelEncoder()
label_encoder
=np.array(df['kinase_pspa_small'].fillna('Others'))
labels = label_encoder.fit_transform(labels) y
'site_seq']) onehot_encode(df[
x0_A | x0_C | x0_D | x0_E | x0_F | x0_G | x0_H | x0_I | x0_K | x0_L | ... | x40_R | x40_S | x40_T | x40_V | x40_W | x40_Y | x40__ | x40_s | x40_t | x40_y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
4 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
29151 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
29152 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29154 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
29156 rows × 962 columns
= onehot_encode(train[SEQ_COL])
X
= X.columns.str[1:].tolist()
colname = [f"{int(item.split('_', 1)[0]) - 20}{item.split('_', 1)[1]}" for item in colname]
colname
= colname
X.columns X.head()
-20A | -20C | -20D | -20E | -20F | -20G | -20H | -20I | -20K | -20L | ... | 20R | 20S | 20T | 20V | 20W | 20Y | 20_ | 20s | 20t | 20y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
4 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5 rows × 962 columns
from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from xgboost import XGBClassifier
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
def get_train_result_multilabel(X, y, label_names):
= train_test_split(X, y, test_size=0.2, random_state=42)
X_train, X_test, y_train, y_test
= OneVsRestClassifier(
model
XGBClassifier(='binary:logistic',
objective='logloss',
eval_metric# use_label_encoder=False,
='hist'
tree_method
)
)
print("Training multi-label model...")
model.fit(X_train, y_train)
print("Predicting...")
= model.predict(X_test)
y_pred
print("Classification Report:")
print(classification_report(y_test, y_pred, target_names=label_names, zero_division=0))
return model, (X_train, X_test, y_train, y_test, y_pred)
= get_train_result_multilabel(X, y, label_names=mlb.classes_) model, data_split
Training multi-label model...
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:57] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:09:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:01] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:23] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 52 is present in all training examples.
warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:50] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 66 is present in all training examples.
warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:10:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 74 is present in all training examples.
warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:57] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:11:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:01] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 132 is present in all training examples.
warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:39] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:50] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:12:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:23] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:42] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:49] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:56] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:57] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:13:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:04] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:08] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:12] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:15] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:18] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:23] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:27] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:30] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:31] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:50] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:51] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:54] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:55] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:57] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:58] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:14:59] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:03] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:05] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:06] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:10] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:11] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:14] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:17] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:21] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:22] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 259 is present in all training examples.
warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:24] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:27] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 264 is present in all training examples.
warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:29] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:31] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:32] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:33] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:36] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:37] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/multiclass.py:90: UserWarning: Label not 272 is present in all training examples.
warnings.warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:41] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:44] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:45] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../xgboost/training.py:183: UserWarning: [14:15:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
def get_train_result(X,y):
=X.copy()
X= train_test_split(X, y, test_size=0.2,stratify=y, random_state=42)
X_train, X_test, y_train, y_test =len(set(y))
num_classes# Convert to XGBoost DMatrix format
= xgb.DMatrix(X_train, label=y_train)
dtrain = xgb.DMatrix(X_test, label=y_test)
dtest
# Set XGBoost parameters
= {
params 'objective': 'multi:softmax', # Multi-class classification
'num_class': num_classes,
'eval_metric': 'mlogloss',
'max_depth': 6,
'eta': 0.1,
'tree_method': 'hist'
}
# Train model
print('training')
= xgb.train(params, dtrain, num_boost_round=100)
model
print('predict on test')
# Evaluate accuracy
= model.predict(dtest)
y_pred = np.round(y_pred).astype(int)
y_pred # accuracy = (y_pred == y_test).mean()
= plt.subplots(figsize=(10, 6)) # Adjust figure size
fig, ax ="weight", max_num_features=30, ax=ax)
xgb.plot_importance(model, importance_typef"Top {30} Most Important Features")
plt.title(
plt.show()
# Get detailed metrics
= classification_report(y_test,
report
y_pred, = label_encoder.classes_,
target_names =4, zero_division=0)
digitsprint(report)
# Compute confusion matrix
= confusion_matrix(y_test, y_pred)
cm
# Create a heatmap
=(8+4, 6+4))
plt.figure(figsize=False, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
sns.heatmap(cm, annot"Predicted Label")
plt.xlabel("True Label")
plt.ylabel("Confusion Matrix")
plt.title(
# plt.savefig('CM.png')
plt.show()return model, (X_train, X_test, y_train, y_test,y_pred)
# X=onehot.copy()
= get_train_result(X,y) model, data
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[120], line 1 ----> 1 model, data = get_train_result(X,y) Cell In[118], line 3, in get_train_result(X, y) 1 def get_train_result(X,y): 2 X=X.copy() ----> 3 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,stratify=y, random_state=42) 4 num_classes=len(set(y)) 5 # Convert to XGBoost DMatrix format File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/utils/_param_validation.py:216, in validate_params.<locals>.decorator.<locals>.wrapper(*args, **kwargs) 210 try: 211 with config_context( 212 skip_parameter_validation=( 213 prefer_skip_nested_validation or global_skip_validation 214 ) 215 ): --> 216 return func(*args, **kwargs) 217 except InvalidParameterError as e: 218 # When the function is just a wrapper around an estimator, we allow 219 # the function to delegate validation to the estimator, but we replace 220 # the name of the estimator by the name of the function in the error 221 # message to avoid confusion. 222 msg = re.sub( 223 r"parameter of \w+ must be", 224 f"parameter of {func.__qualname__} must be", 225 str(e), 226 ) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/model_selection/_split.py:2872, in train_test_split(test_size, train_size, random_state, shuffle, stratify, *arrays) 2868 CVClass = ShuffleSplit 2870 cv = CVClass(test_size=n_test, train_size=n_train, random_state=random_state) -> 2872 train, test = next(cv.split(X=arrays[0], y=stratify)) 2874 train, test = ensure_common_namespace_device(arrays[0], train, test) 2876 return list( 2877 chain.from_iterable( 2878 (_safe_indexing(a, train), _safe_indexing(a, test)) for a in arrays 2879 ) 2880 ) File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/model_selection/_split.py:1909, in BaseShuffleSplit.split(self, X, y, groups) 1879 """Generate indices to split data into training and test set. 1880 1881 Parameters (...) 1906 to an integer. 1907 """ 1908 X, y, groups = indexable(X, y, groups) -> 1909 for train, test in self._iter_indices(X, y, groups): 1910 yield train, test File /home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/sklearn/model_selection/_split.py:2318, in StratifiedShuffleSplit._iter_indices(self, X, y, groups) 2316 class_counts = np.bincount(y_indices) 2317 if np.min(class_counts) < 2: -> 2318 raise ValueError( 2319 "The least populated class in y has only 1" 2320 " member, which is too few. The minimum" 2321 " number of groups for any class cannot" 2322 " be less than 2." 2323 ) 2325 if n_train < n_classes: 2326 raise ValueError( 2327 "The train_size = %d should be greater or " 2328 "equal to the number of classes = %d" % (n_train, n_classes) 2329 ) ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.
= get_train_result(X,y) model, data
training
predict on test
precision recall f1-score support
ABL 0.3103 0.1314 0.1846 137
ACK 0.6667 0.0833 0.1481 24
AKT/ROCK 0.3057 0.3105 0.3081 190
ALPHA/MLK 0.1493 0.0746 0.0995 134
AMPK 0.1818 0.0920 0.1221 87
AURK/PKA 0.3206 0.5437 0.4034 263
CAMK2 0.4000 0.0408 0.0741 49
CDK_I 0.5067 0.4824 0.4943 313
CDK_II 0.7778 0.1321 0.2258 53
CK1 0.2041 0.1923 0.1980 104
CK2 0.4405 0.5988 0.5076 167
CMGC 0.2500 0.0500 0.0833 40
DYRK/HIPK 0.1379 0.0611 0.0847 131
Discoidin domain receptors 1.0000 0.2727 0.4286 11
EGF receptors 0.2667 0.0588 0.0964 68
EIF2AK/TLK 0.2262 0.1776 0.1990 107
Ephrin receptors 0.6667 0.1359 0.2258 103
FAM20C 0.0000 0.0000 0.0000 2
FGF and VEGF receptors 0.4118 0.0593 0.1037 118
GRK 0.2143 0.0577 0.0909 52
GSK3 0.3333 0.2222 0.2667 72
IKK 0.2238 0.4612 0.3014 232
Insulin and neurotrophin receptors 0.3103 0.1374 0.1905 131
JAK 0.3750 0.0316 0.0583 95
LATS/NDR 0.2000 0.0484 0.0779 62
LKB/CAMKK 0.5714 0.1290 0.2105 31
LKB/CAMKK_Non-canonical (WEE) 0.0000 0.0000 0.0000 4
MAP3K 0.2927 0.1091 0.1589 110
MAP4K 0.2433 0.5000 0.3273 236
MAPK 0.3871 0.6949 0.4972 390
MARK/SIK 0.1954 0.1809 0.1878 94
MLCK/DAPK 1.0000 0.0833 0.1538 24
NAK 0.0000 0.0000 0.0000 9
NEK/ASK 0.2105 0.0825 0.1185 97
Non-canonical (PDHK) 0.0000 0.0000 0.0000 5
Non-canonical (WEE) 0.0000 0.0000 0.0000 26
Others 0.0870 0.0253 0.0392 79
PAK_I 0.2667 0.0426 0.0734 94
PAK_II 0.0000 0.0000 0.0000 17
PDGF receptors 0.2818 0.5927 0.3820 329
PIKK 0.3495 0.7386 0.4745 88
PKC 0.2645 0.3133 0.2868 233
PLK 0.1579 0.0417 0.0659 72
PRKD/MAPKAPK 0.2090 0.2476 0.2267 206
RIPK/WNK 0.3333 0.0294 0.0541 68
S6K/RSK 0.1379 0.0580 0.0816 138
SRC 0.3143 0.5537 0.4010 298
SRPK/CLK 1.0000 0.0952 0.1739 21
SYK and FAK 0.0000 0.0000 0.0000 28
TAM receptors 0.3200 0.0684 0.1127 117
TEC 0.0000 0.0000 0.0000 52
TGFBR 0.2692 0.3294 0.2963 85
ULK/TTBK 0.5556 0.1587 0.2469 63
assorted 0.0000 0.0000 0.0000 60
assorted_Non-canomical (PDHK) 0.0000 0.0000 0.0000 1
assorted_Non-canonical (PDHK) 0.0000 0.0000 0.0000 4
basophilic 0.0000 0.0000 0.0000 8
accuracy 0.3044 5832
macro avg 0.2864 0.1672 0.1674 5832
weighted avg 0.3034 0.3044 0.2607 5832
= model.get_score(importance_type='gain')
gain_scores
= recover_pssm(pd.Series(gain_scores))
gain_pssm
=(14,10),include_zero=False) plot_logo_heatmap(gain_pssm,figsize
= model.get_score(importance_type='weight')
weight_scores
= recover_pssm(pd.Series(weight_scores))
weight_pssm
=(14,10),include_zero=False) plot_logo_heatmap(weight_pssm,figsize
= plt.subplots(figsize=(10, 6)) # Adjust figure size
fig, ax ="weight", max_num_features=30, ax=ax)
xgb.plot_importance(model, importance_typef"Top {30} Most Important Features")
plt.title( plt.show()
from sklearn.metrics import classification_report
# Get detailed metrics
= classification_report(y_test,
report
y_pred, = label_encoder.classes_,
target_names =4, zero_division=0)
digitsprint(report)
print(report)
precision recall f1-score support
ABL 0.2656 0.5770 0.3638 331
ACK 0.2273 0.1087 0.1471 46
AKT/ROCK 0.3539 0.3500 0.3520 180
ALPHA/MLK 0.1481 0.0984 0.1182 122
AMPK 0.2113 0.1442 0.1714 104
AURK/PKA 0.3537 0.6268 0.4522 351
CAMK2 0.1552 0.0789 0.1047 114
CDK_I 0.4790 0.5245 0.5007 326
CDK_II 1.0000 0.0192 0.0377 52
CK1 0.1905 0.2286 0.2078 140
CK2 0.3952 0.6117 0.4802 188
CMGC 0.1818 0.0417 0.0678 48
DYRK/HIPK 0.2266 0.1593 0.1871 182
Discoidin domain receptors 0.4000 0.0667 0.1143 30
EGF receptors 0.5455 0.0896 0.1538 67
EIF2AK/TLK 0.2152 0.2615 0.2361 130
Ephrin receptors 0.2316 0.2066 0.2184 213
FAM20C 0.0000 0.0000 0.0000 2
FGF and VEGF receptors 0.0000 0.0000 0.0000 115
GRK 0.0909 0.0213 0.0345 47
GSK3 0.2179 0.1753 0.1943 97
IKK 0.2172 0.4076 0.2834 211
Insulin and neurotrophin receptors 0.3750 0.0600 0.1034 50
JAK 1.0000 0.0370 0.0714 27
LATS/NDR 0.2857 0.0784 0.1231 51
LKB/CAMKK 0.2500 0.2308 0.2400 52
LKB/CAMKK_Non-canonical (WEE) 0.0000 0.0000 0.0000 4
MAP3K 0.1250 0.0256 0.0426 78
MAP4K 0.2432 0.4876 0.3245 201
MAPK 0.3787 0.5850 0.4598 347
MARK/SIK 0.2000 0.0843 0.1186 83
MLCK/DAPK 0.3333 0.0357 0.0645 28
NAK 0.0000 0.0000 0.0000 8
NEK/ASK 0.1250 0.0532 0.0746 94
Non-canonical (PDHK) 0.0000 0.0000 0.0000 4
Non-canonical (WEE) 0.0000 0.0000 0.0000 16
PAK_I 0.0667 0.0128 0.0215 78
PAK_II 0.0000 0.0000 0.0000 17
PDGF receptors 0.2174 0.1707 0.1913 205
PIKK 0.3696 0.7473 0.4945 91
PKC 0.2932 0.3411 0.3153 214
PLK 0.1515 0.0575 0.0833 87
PRKD/MAPKAPK 0.2767 0.2431 0.2588 181
RIPK/WNK 0.2273 0.1031 0.1418 97
S6K/RSK 0.2766 0.1066 0.1538 122
SRC 0.2587 0.3436 0.2952 259
SRPK/CLK 0.6000 0.1304 0.2143 23
SYK and FAK 0.7500 0.0833 0.1500 36
TAM receptors 0.2000 0.0484 0.0779 124
TEC 0.2000 0.0300 0.0522 100
TGFBR 0.2324 0.3204 0.2694 103
ULK/TTBK 0.0000 0.0000 0.0000 49
assorted 0.0000 0.0000 0.0000 62
assorted_Non-canomical (PDHK) 0.0000 0.0000 0.0000 2
assorted_Non-canonical (PDHK) 0.0000 0.0000 0.0000 5
basophilic 0.0000 0.0000 0.0000 10
others 0.0000 0.0000 0.0000 125
accuracy 0.2899 6129
macro avg 0.2376 0.1616 0.1538 6129
weighted avg 0.2681 0.2899 0.2494 6129
accuracy
0.2899331049110785
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import xgboost as xgb
from sklearn.metrics import confusion_matrix
import seaborn as sns
# Convert test data to DMatrix format
= xgb.DMatrix(X_test)
dtest
# Predict class labels
= model.predict(dtest)
y_pred
# Convert predictions to integers (if not already)
= np.round(y_pred).astype(int)
y_pred
# Compute confusion matrix
= confusion_matrix(y_test, y_pred)
cm
# Create a heatmap
=(8+4, 6+4))
plt.figure(figsize=False, fmt='d', cmap='Blues', xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
sns.heatmap(cm, annot"Predicted Label")
plt.xlabel("True Label")
plt.ylabel("Confusion Matrix")
plt.title(
'CM.png')
plt.savefig( plt.show()
# pip install shap
import shap
= shap.TreeExplainer(model) explainer
= explainer(X_test) shap_values
shap.initjs()
# Create SHAP explainer
1%| | 2817/349353 [04:08<508:27]
=X.columns.tolist()) shap.summary_plot(shap_values, X_test, feature_names
y_pred
array([ 7., 0., 10., ..., 45., 10., 28.], dtype=float32)
accuracy
0.2935225974873552
pspa_small
kinase
AAK1 NAK
ABL1 ABL
ABL2 ABL
TNK2 ACK
ACVR2A TGFBR
...
YSK1 MAP4K
ZAK MAP3K
ZAP70 SYK and FAK
EEF2K ALPHA/MLK
FAM20C FAM20C
Name: pspa_category_small, Length: 522, dtype: object
from fastcore.utils import L
onehot
-7A | -7C | -7D | -7E | -7F | -7G | -7H | -7I | -7K | -7L | -7M | -7N | -7P | -7Q | -7R | -7S | -7T | -7V | -7W | -7Y | -7_ | -7s | -7t | -7y | -6A | -6C | -6D | -6E | -6F | -6G | -6H | -6I | -6K | -6L | -6M | -6N | -6P | -6Q | -6R | -6S | -6T | -6V | -6W | -6Y | -6_ | -6s | -6t | -6y | -5A | -5C | -5D | -5E | -5F | -5G | -5H | -5I | -5K | -5L | -5M | -5N | -5P | -5Q | -5R | -5S | -5T | -5V | -5W | -5Y | -5_ | -5s | -5t | -5y | -4A | -4C | -4D | -4E | -4F | -4G | -4H | -4I | -4K | -4L | -4M | -4N | -4P | -4Q | -4R | -4S | -4T | -4V | -4W | -4Y | -4_ | -4s | -4t | -4y | -3A | -3C | -3D | -3E | -3F | -3G | -3H | -3I | -3K | -3L | -3M | -3N | -3P | -3Q | -3R | -3S | -3T | -3V | -3W | -3Y | -3_ | -3s | -3t | -3y | -2A | -2C | -2D | -2E | -2F | -2G | -2H | -2I | -2K | -2L | -2M | -2N | -2P | -2Q | -2R | -2S | -2T | -2V | -2W | -2Y | -2_ | -2s | -2t | -2y | -1A | -1C | -1D | -1E | -1F | -1G | -1H | -1I | -1K | -1L | -1M | -1N | -1P | -1Q | -1R | -1S | -1T | -1V | -1W | -1Y | -1_ | -1s | -1t | -1y | 0s | 0t | 0y | 1A | 1C | 1D | 1E | 1F | 1G | 1H | 1I | 1K | 1L | 1M | 1N | 1P | 1Q | 1R | 1S | 1T | 1V | 1W | 1Y | 1_ | 1s | 1t | 1y | 2A | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2K | 2L | 2M | 2N | 2P | 2Q | 2R | 2S | 2T | 2V | 2W | 2Y | 2_ | 2s | 2t | 2y | 3A | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3K | 3L | 3M | 3N | 3P | 3Q | 3R | 3S | 3T | 3V | 3W | 3Y | 3_ | 3s | 3t | 3y | 4A | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4K | 4L | 4M | 4N | 4P | 4Q | 4R | 4S | 4T | 4V | 4W | 4Y | 4_ | 4s | 4t | 4y | 5A | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5K | 5L | 5M | 5N | 5P | 5Q | 5R | 5S | 5T | 5V | 5W | 5Y | 5_ | 5s | 5t | 5y | 6A | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6K | 6L | 6M | 6N | 6P | 6Q | 6R | 6S | 6T | 6V | 6W | 6Y | 6_ | 6s | 6t | 6y | 7A | 7C | 7D | 7E | 7F | 7G | 7H | 7I | 7K | 7L | 7M | 7N | 7P | 7Q | 7R | 7S | 7T | 7V | 7W | 7Y | 7_ | 7s | 7t | 7y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
30639 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
30640 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
30641 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
30642 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
30643 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
30644 rows × 339 columns
# import seaborn as sns
# group_colors = {
# 'AG': '#037f04',
# 'DEsty': '#da143e',
# 'F': '#84380b',
# 'HQN': '#8d2be1',
# 'LMIFWTVC': '#d9a41c',
# 'P': '#000000',
# 'RK': '#0000ff',
# 'ST': '#8d008d',
# 'Y': '#84380b',
# '_': 'yellow'
# }
# aa_color_map = {}
# for group, base_color in group_colors.items():
# # Create a light palette (from base_color to white) with as many colors as letters in the group
# palette = sns.light_palette(base_color, n_colors=8, input="hex",reverse=True)
# # Assign each letter in the group a progressively lighter color
# for i, aa in enumerate(sorted(group)):
# aa_color_map[aa] = palette[i]
# df = Data.get_ks_dataset()
= sns.color_palette("tab20", 20) + [sns.color_palette("tab20b", 20)[::4][i] for i in [0,1,3,4]] tab20bc
"tab20c", 10) sns.color_palette(
"tab20c", 25) sns.color_palette(
import seaborn as sns
def plot_2d(X: pd.DataFrame, # a dataframe that has first column to be x, and second column to be y
**kwargs, # arguments for sns.scatterplot
):"Make 2D plot from a dataframe that has first column to be x, and second column to be y"
=(7,7))
plt.figure(figsize= X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)
sns.scatterplot(data
def plot_2d_style(embed,no_frame=False, **kwargs):
**kwargs)
plot_2d(embed,=False,markerscale=8, bbox_to_anchor=(1, 1), loc='upper left')
plt.legend(frameon='both', which='both', length=0)
plt.tick_params(axisif no_frame:
= plt.gca()
ax False)
ax.set_frame_on('')
plt.xlabel('')
plt.ylabel(
plt.xticks([]) plt.yticks([])
=reduce_feature(onehot,'pca',n=50,seed=None)
pca_embed=reduce_feature(pca_embed,'umap',complexity=15,seed=None) onhot_embed
len(onehot)
29156
=reduce_feature(onehot,'umap',complexity=15,seed=None) onhot_embed
# pca_embed_onehot=reduce_feature(onehot,'pca',n=100,seed=None)
# pca_embed_kmer = reduce_feature(feature_matrix_scaled,'pca',n=5,seed=None)
# pca_embed=pd.concat([pca_embed_onehot,pca_embed_kmer],axis=1)
=reduce_feature(pca_embed_onehot,'umap',complexity=15,seed=None) onhot_embed
= umap.UMAP(metric='dice', random_state=42)
umap_model
# Fit and transform the data
= umap_model.fit_transform(onehot) embedding
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../umap/umap_.py:1887: UserWarning: gradient function is not yet implemented for dice distance metric; inverse_transform will be unavailable
warn(
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../umap/umap_.py:1952: UserWarning: n_jobs value 1 overridden to 1 by setting random_state. Use no seed for parallelism.
warn(
= pd.DataFrame(embedding) onhot_embed
=reduce_feature(features,'pca',n=50,seed=None) pca_embed
=reduce_feature(pca_embed,'umap',complexity=15,seed=None) onhot_embed
import prince
= prince.MCA(
mca =2,
n_components=3,
n_iter=True,
copy=True,
check_input='sklearn',
engine=42,
random_state=False
one_hot
)= mca.fit_transform(onehot) mca
mca
0 | 1 | |
---|---|---|
0 | -0.099896 | -0.122510 |
1 | -0.109294 | -0.122680 |
2 | -0.091015 | -0.120340 |
3 | -0.097323 | -0.133918 |
4 | -0.110189 | -0.111004 |
... | ... | ... |
29151 | -0.094846 | -0.117303 |
29152 | -0.094179 | -0.077234 |
29153 | -0.109504 | -0.115057 |
29154 | -0.101956 | -0.130661 |
29155 | -0.090492 | -0.114562 |
29156 rows × 2 columns
import altair as alt
"vegafusion") alt.data_transformers.enable(
DataTransformerRegistry.enable('vegafusion')
mca.eigenvalues_summary
eigenvalue | % of variance | % of variance (cumulative) | |
---|---|---|---|
component | |||
0 | 0.334 | 1.49% | 1.49% |
1 | 0.292 | 1.30% | 2.79% |
=len(df[SEQ_COL].iloc[0])//2 center
=1,hue=df[SEQ_COL].str[center]) plot_2d_style(mca,s
=1,hue=df[SEQ_COL].str[center]) plot_2d_style(onhot_embed,s
=1,hue=df[SEQ_COL].str[center]) plot_2d_style(onhot_embed,s
=1,hue=df[SEQ_COL].str[center]) plot_2d_style(onhot_embed,s
=1,hue=df[SEQ_COL].str[center]) plot_2d_style(onhot_embed,s
=list('PGACSTVILMFYWHKRQNDEsty_') hue_order
=1,hue=df[SEQ_COL].str[center+1],palette=tab20bc,hue_order=hue_order) plot_2d_style(onhot_embed,s
= df.kinase_group.fillna('Other') group_hue
=1,hue=group_hue,palette=tab20bc) plot_2d_style(onhot_embed,s
/tmp/ipykernel_33835/2654063392.py:7: UserWarning: The palette list has more values (24) than needed (9), which may not be intended.
sns.scatterplot(data = X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)
= df.kinase_paper.map(group).fillna('Other') group_hue
=list('PGACSTVILMFYWHKRQNDEsty_') hue_order
=1,hue=df[SEQ_COL].str[8],palette=tab20bc,hue_order=hue_order) plot_2d_style(onhot_embed,s
=1,hue=group_hue,palette=tab20bc) plot_2d_style(onhot_embed,s
/tmp/ipykernel_7561/2523523824.py:7: UserWarning: The palette list has more values (24) than needed (9), which may not be intended.
sns.scatterplot(data = X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)
=(df[SEQ_COL].str[8]=='Q').replace({True:'1Q',False:'others'}) Qlabel
=1,hue=Qlabel) plot_2d_style(onhot_embed,s
Not very much separation
Physicochemical encoded
= Data.get_aa_info().iloc[:-2,:] aa
= get_rdkit_df(aa,'SMILES') feat
removing columns: {'MaxEStateIndex', 'SlogP_VSA7', 'fr_N_O', 'fr_lactone', 'NumSaturatedHeterocycles', 'Chi2v', 'MaxPartialCharge', 'fr_dihydropyridine', 'SMR_VSA8', 'NumAmideBonds', 'fr_COO2', 'fr_pyridine', 'Chi0', 'fr_term_acetylene', 'fr_halogen', 'EState_VSA11', 'SlogP_VSA9', 'fr_isothiocyan', 'fr_nitrile', 'fr_Ar_COO', 'fr_alkyl_halide', 'fr_oxazole', 'fr_imidazole', 'fr_nitro', 'fr_prisulfonamd', 'ExactMolWt', 'NumRadicalElectrons', 'fr_Ndealkylation1', 'fr_priamide', 'SMR_VSA2', 'PEOE_VSA13', 'fr_Nhpyrrole', 'NumValenceElectrons', 'fr_benzene', 'fr_Ar_OH', 'fr_Imine', 'fr_Ar_NH', 'fr_para_hydroxylation', 'fr_allylic_oxid', 'fr_ester', 'VSA_EState1', 'fr_methoxy', 'Chi2n', 'fr_ketone', 'fr_aldehyde', 'fr_lactam', 'fr_benzodiazepine', 'fr_phos_acid', 'NumBridgeheadAtoms', 'SlogP_VSA12', 'fr_hdrzone', 'fr_urea', 'fr_ArN', 'NumAliphaticRings', 'BCUT2D_MRHI', 'fr_COO', 'fr_thiazole', 'fr_ether', 'fr_Al_OH_noTert', 'PEOE_VSA5', 'NumSaturatedRings', 'fr_Ndealkylation2', 'fr_amidine', 'SlogP_VSA6', 'fr_morpholine', 'fr_C_O_noCOO', 'fr_sulfone', 'fr_bicyclic', 'fr_nitro_arom', 'fr_azo', 'fr_hdrzine', 'fr_barbitur', 'LabuteASA', 'SlogP_VSA10', 'fr_C_S', 'VSA_EState9', 'fr_imide', 'Asphericity', 'MinAbsPartialCharge', 'fr_piperdine', 'fr_ketone_Topliss', 'fr_tetrazole', 'HeavyAtomMolWt', 'fr_oxime', 'fr_amide', 'PMI3', 'fr_azide', 'HeavyAtomCount', 'fr_sulfonamd', 'fr_aniline', 'fr_guanido', 'fr_alkyl_carbamate', 'fr_isocyan', 'fr_HOCCN', 'fr_diazo', 'fr_phos_ester', 'fr_nitroso', 'fr_thiocyan', 'fr_piperzine', 'Eccentricity', 'NumSaturatedCarbocycles', 'fr_furan', 'fr_phenol', 'NumSpiroAtoms', 'fr_thiophene', 'NumAliphaticCarbocycles', 'fr_epoxide', 'fr_quatN', 'fr_aryl_methyl', 'SlogP_VSA11', 'fr_phenol_noOrthoHbond', 'fr_nitro_arom_nonortho'}
= aa.Name.tolist(), hue = 'aa', method = 'pca') plot_cluster(feat, name_list
= get_similarity(feat) dist_df,sim_df
=True) plot_matrix(dist_df,inverse_color
plot_matrix(sim_df)
feat.shape
(23, 116)
def encode_seq(seq, encoder):
= []
vec = len(encoder.iloc[0]) # Get the length of feature vectors
feature_length
for aa in seq:
if aa.upper() in encoder.index:
vec.extend(encoder.loc[aa.upper()].tolist())else:
0] * feature_length) # Append zeros if AA is missing
vec.extend([return vec
check_seq_df(df, SEQ_COL)
0 AEGLRPAsPLGLTQE
1 GGGAGPVsPQHHELT
2 LRGNVVPsPLPtRRt
3 GPMRRSKsPADSANG
4 PERsQEEsPPGSTKR
...
30639 GGGEGNVsQVGRVWP
30640 SSYRALIsAFSRLTR
30641 MDRSKRNsIAGFPPR
30642 FKVRHRAsGQVMALK
30643 YEKDGDEsSPILTsF
Name: substrate, Length: 30644, dtype: object
= df['substrate'].progress_apply(lambda x: encode_seq(x,feat)) encoded
= encoded.apply(pd.Series) encoded
get_train_result(encoded)
training
predict on test
--------------------------------------------------------------------------- NameError Traceback (most recent call last) Cell In[22], line 1 ----> 1 get_train_result(encoded) Cell In[13], line 31, in get_train_result(X) 27 y_pred = np.round(y_pred).astype(int) 28 # accuracy = (y_pred == y_test).mean() ---> 31 fig, ax = plt.subplots(figsize=(10, 6)) # Adjust figure size 32 xgb.plot_importance(model, importance_type="weight", max_num_features=30, ax=ax) 33 plt.title(f"Top {30} Most Important Features") NameError: name 'plt' is not defined
encoded
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | ... | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | 1248 | 1249 | 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 1263 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 | 1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 | 1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 | 1290 | 1291 | 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311 | 1312 | 1313 | 1314 | 1315 | 1316 | 1317 | 1318 | 1319 | 1320 | 1321 | 1322 | 1323 | 1324 | 1325 | 1326 | 1327 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 1359 | 1360 | 1361 | 1362 | 1363 | 1364 | 1365 | 1366 | 1367 | 1368 | 1369 | 1370 | 1371 | 1372 | 1373 | 1374 | 1375 | 1376 | 1377 | 1378 | 1379 | 1380 | 1381 | 1382 | 1383 | 1384 | 1385 | 1386 | 1387 | 1388 | 1389 | 1390 | 1391 | 1392 | 1393 | 1394 | 1395 | 1396 | 1397 | 1398 | 1399 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 | 1420 | 1421 | 1422 | 1423 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 | 1430 | 1431 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 1439 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 | 1450 | 1451 | 1452 | 1453 | 1454 | 1455 | 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | 1488 | 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 | 1500 | 1501 | 1502 | 1503 | 1504 | 1505 | 1506 | 1507 | 1508 | 1509 | 1510 | 1511 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 | 1520 | 1521 | 1522 | 1523 | 1524 | 1525 | 1526 | 1527 | 1528 | 1529 | 1530 | 1531 | 1532 | 1533 | 1534 | 1535 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 | 1550 | 1551 | 1552 | 1553 | 1554 | 1555 | 1556 | 1557 | 1558 | 1559 | 1560 | 1561 | 1562 | 1563 | 1564 | 1565 | 1566 | 1567 | 1568 | 1569 | 1570 | 1571 | 1572 | 1573 | 1574 | 1575 | 1576 | 1577 | 1578 | 1579 | 1580 | 1581 | 1582 | 1583 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 | 1590 | 1591 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 1599 | 1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 | 1610 | 1611 | 1612 | 1613 | 1614 | 1615 | 1616 | 1617 | 1618 | 1619 | 1620 | 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | 1648 | 1649 | 1650 | 1651 | 1652 | 1653 | 1654 | 1655 | 1656 | 1657 | 1658 | 1659 | 1660 | 1661 | 1662 | 1663 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 | 1670 | 1671 | 1672 | 1673 | 1674 | 1675 | 1676 | 1677 | 1678 | 1679 | 1680 | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | 1688 | 1689 | 1690 | 1691 | 1692 | 1693 | 1694 | 1695 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | 1704 | 1705 | 1706 | 1707 | 1708 | 1709 | 1710 | 1711 | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1718 | 1719 | 1720 | 1721 | 1722 | 1723 | 1724 | 1725 | 1726 | 1727 | 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -1.573701 | 1.193554 | 0.430590 | -0.375462 | -0.086117 | -1.439770 | 0.228166 | -0.308911 | 1.656688 | 0.103007 | -0.780051 | -0.526903 | 1.203883 | -1.415519 | 1.465101 | -1.347549 | 1.162418 | 0.678178 | -1.660842 | 0.058766 | -0.928528 | -1.372879 | -1.406169 | -1.434358 | -1.395786 | -1.364454 | -1.371840 | -1.490293 | -1.312462 | -1.397762 | 0.661861 | -0.443256 | -1.488584 | -1.704924 | -1.164169 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -0.290532 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | -0.626017 | -0.285797 | -0.779939 | -0.748232 | -0.483822 | 0.342808 | -0.393932 | -0.462400 | 0.572190 | 0.349099 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.492588 | -0.556890 | -0.082356 | -1.373751 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.248334 | -1.009130 | 1.627587 | 1.033123 | -1.454953 | 1.869310 | 0.564352 | -0.990362 | -0.196363 | -1.144174 | 0.263960 | -0.056770 | -0.409990 | 0.000656 | 0.028134 | -0.199915 | -1.248978 | -1.218664 | -0.661636 | -0.526379 | -0.271923 | 0.069844 | 0.109885 | -0.172745 | 0.256753 | -0.437180 | -0.085041 | 0.534017 | -0.174262 | -0.109797 | -0.229347 | 0.015683 | -0.111461 | -0.350344 | -0.210248 | -0.401559 | -0.290374 | -0.463418 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -0.288416 | 0.677296 | -0.694405 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | 0.606766 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | 0.732822 | -0.213201 | 0.556288 | 0.561766 | 1.556719 | 1.830379 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.899668 | 1.540314 | -0.410105 | -2.063646 | -0.509368 | -0.662030 | -0.522169 | 0.037557 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | 0.799076 | -0.362143 | 0.413793 | -0.556890 | -0.278572 | -0.274281 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.402920 | -0.005825 | -0.734232 | 1.563723 | 0.183675 | 0.200628 | -0.163011 | -0.363060 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.66116 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | 0.183853 | -0.040705 | 0.471495 | 0.845016 | -0.055272 | -0.395340 | 0.229561 | -0.309671 | 0.042430 | -0.172341 | -0.582692 | -0.526883 | -0.970017 | 0.047138 | -0.616358 | 0.207388 | 0.112309 | 0.157398 | -0.722995 | 0.556356 | -0.560003 | 0.257622 | 0.112980 | -0.367147 | 0.213799 | -0.093517 | -0.101010 | -0.299173 | 0.233383 | 0.015376 | 0.661861 | -0.397483 | -0.007674 | -0.020725 | 0.580397 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | 0.466515 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 1.732827 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 1.955677 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | 1.722814 | -0.611041 | -0.435773 | -0.440926 | 1.075912 | -0.769976 | -0.626017 | -0.285797 | -0.692565 | -0.628416 | -0.314340 | 1.137342 | -0.379254 | 0.028423 | 2.481339 | 1.127953 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.55689 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.124128 | -0.559184 | 1.300123 | 0.280635 | -0.473019 | -0.410698 | 1.935219 | 1.932746 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | ... | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | 0.183853 | -0.040705 | 0.471495 | 0.845016 | -0.055272 | -0.395340 | 0.229561 | -0.309671 | 0.042430 | -0.172341 | -0.582692 | -0.526883 | -0.970017 | 0.047138 | -0.616358 | 0.207388 | 0.112309 | 0.157398 | -0.722995 | 0.556356 | -0.560003 | 0.257622 | 0.112980 | -0.367147 | 0.213799 | -0.093517 | -0.101010 | -0.299173 | 0.233383 | 0.015376 | 0.661861 | -0.397483 | -0.007674 | -0.020725 | 0.580397 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | 0.466515 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 1.732827 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 1.955677 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 1.722814 | -0.611041 | -0.435773 | -0.440926 | 1.075912 | -0.769976 | -0.626017 | -0.285797 | -0.692565 | -0.628416 | -0.314340 | 1.137342 | -0.379254 | 0.028423 | 2.481339 | 1.127953 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.556890 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.124128 | -0.559184 | 1.300123 | 0.280635 | -0.473019 | -0.410698 | 1.935219 | 1.932746 | -0.649584 | 2.010995 | 0.251582 | -0.617142 | 0.943337 | -0.694539 | 0.242444 | -0.316691 | 0.445994 | -0.103504 | -0.928071 | -0.526259 | -0.043918 | 0.556229 | -0.562001 | -0.523909 | -1.453514 | -1.038963 | -0.702544 | 0.833573 | -0.648508 | -0.641610 | -0.724841 | -0.737085 | -0.712697 | -0.825083 | -0.563530 | -0.732682 | -0.788433 | -0.918720 | 0.570570 | -0.418096 | -0.521056 | -0.836672 | -1.023990 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | 1.021053 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | 0.634977 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.800756 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.131058 | 0.586510 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.733998 | 1.616607 | -0.450977 | -0.081738 | -0.543976 | -1.334746 | 0.505208 | 0.738526 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.614352 | -0.556890 | -0.890879 | -0.783861 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.445444 | -0.776063 | 1.113066 | -1.254281 | -0.843553 | -0.133065 | 0.327619 | -0.289030 | 0.152079 | -1.150286 | 0.309664 | -0.331836 | -0.409990 | -0.023766 | 0.229566 | -0.309674 | -0.764700 | -0.723037 | -0.306389 | -0.526878 | -0.317935 | -0.018651 | 0.048713 | -0.220755 | 0.095997 | 0.257488 | -0.085041 | 0.534017 | -0.163183 | -0.016913 | -0.142807 | 0.015683 | -0.036322 | -0.291014 | -0.146932 | -0.342215 | -0.242671 | -0.419810 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | 0.553168 | -0.113045 | -0.213201 | 3.240370 | -0.521596 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -0.288416 | 0.677296 | -0.694405 | 0.060693 | 0.472964 | -0.432331 | 1.374052 | 0.606766 | -0.695145 | -0.511968 | -0.308607 | 1.482744 | -0.227779 | 0.433147 | -0.458430 | 0.732822 | -0.213201 | 0.789430 | 0.550350 | 1.556719 | 1.830379 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.624142 | -0.285797 | 0.942571 | -0.652401 | 1.722280 | -0.979698 | -0.481186 | -0.352687 | -0.522169 | 0.037557 | 0.963863 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | 0.799076 | 1.720179 | 0.413793 | -0.556890 | -1.036744 | -0.121221 | -0.308607 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.049549 | -0.111180 | -0.130691 | 1.036214 | 0.115020 | -0.279508 | 1.257136 | 0.905462 | -0.196363 | -1.144174 | 0.263960 | -0.056770 | -0.409990 | 0.000656 | 0.028134 | -0.199915 | -1.248978 | -1.218664 | -0.661636 | -0.526379 | -0.271923 | 0.069844 | 0.109885 | -0.172745 | 0.256753 | -0.437180 | -0.085041 | 0.534017 | -0.174262 | -0.109797 | -0.229347 | 0.015683 | -0.111461 | -0.350344 | -0.210248 | -0.401559 | -0.290374 | -0.463418 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -0.288416 | 0.677296 | -0.694405 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | 0.606766 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | 0.732822 | -0.213201 | 0.556288 | 0.561766 | 1.556719 | 1.830379 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.899668 | 1.540314 | -0.410105 | -2.063646 | -0.509368 | -0.662030 | -0.522169 | 0.037557 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | 0.799076 | -0.362143 | 0.413793 | -0.556890 | -0.278572 | -0.274281 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.402920 | -0.005825 | -0.734232 | 1.563723 | 0.183675 | 0.200628 | -0.163011 | -0.363060 |
1 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.66116 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.661160 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.66116 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -1.573701 | 1.193554 | 0.430590 | -0.375462 | -0.086117 | -1.439770 | 0.228166 | -0.308911 | 1.656688 | 0.103007 | -0.780051 | -0.526903 | 1.203883 | -1.415519 | 1.465101 | -1.347549 | 1.162418 | 0.678178 | -1.660842 | 0.058766 | -0.928528 | -1.372879 | -1.406169 | -1.434358 | -1.395786 | -1.364454 | -1.371840 | -1.490293 | -1.312462 | -1.397762 | 0.661861 | -0.443256 | -1.488584 | -1.704924 | -1.164169 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -0.290532 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | -0.626017 | -0.285797 | -0.779939 | -0.748232 | -0.483822 | 0.342808 | -0.393932 | -0.462400 | 0.572190 | 0.349099 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.492588 | -0.55689 | -0.082356 | -1.373751 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.248334 | -1.009130 | 1.627587 | 1.033123 | -1.454953 | 1.869310 | 0.564352 | -0.990362 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | ... | 0.040161 | 0.509544 | -0.213201 | -0.458831 | 3.240370 | 1.397391 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | 2.581989 | -0.036322 | -0.362143 | -0.839117 | 1.272892 | -0.150798 | 0.258170 | -0.308607 | -0.308607 | 4.176529 | -0.458831 | 4.690416 | 1.543487 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.457146 | -0.324878 | 0.638071 | -0.375321 | -0.264098 | -0.660975 | 0.770606 | 1.230229 | 0.685062 | -0.353472 | 0.394788 | 0.451496 | -0.321661 | 0.199882 | 0.231208 | -0.310569 | 1.216436 | 2.430949 | 2.503290 | -0.526881 | -0.208737 | 0.101905 | 0.110199 | -0.082449 | -0.077989 | 0.402951 | 1.880175 | -1.488058 | 0.603424 | 0.275154 | 0.129314 | 0.522393 | 0.373662 | 0.032711 | 0.402190 | 0.172465 | 0.503801 | 0.262580 | -1.141140 | -0.070838 | -0.346440 | -0.318264 | -0.911087 | 0.338546 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | 2.354812 | -0.308393 | -0.647398 | -1.107502 | 1.794561 | 2.684045 | -0.688230 | -0.882977 | 3.441635 | -0.495561 | -0.366786 | -0.695145 | 0.920122 | -0.308607 | -0.482124 | 0.559776 | 0.880095 | -0.458430 | -0.444104 | -0.213201 | 0.209192 | -0.535127 | -0.66116 | 0.453765 | 0.460478 | -0.611041 | 0.685209 | 0.989332 | -0.455591 | 2.020838 | -0.626017 | -0.285797 | 0.401370 | -0.597940 | -0.002637 | 0.257899 | -0.440152 | 2.549303 | -0.522169 | -1.208609 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | 3.240370 | 1.397391 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | 2.581989 | -0.036322 | -0.362143 | -0.839117 | 1.272892 | -0.150798 | 0.258170 | -0.308607 | -0.308607 | 4.176529 | -0.458831 | 4.690416 | 1.543487 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.457146 | -0.324878 | 0.638071 | -0.375321 | -0.264098 | -0.660975 | 0.770606 | 1.230229 | -0.196363 | -1.144174 | 0.263960 | -0.056770 | -0.409990 | 0.000656 | 0.028134 | -0.199915 | -1.248978 | -1.218664 | -0.661636 | -0.526379 | -0.271923 | 0.069844 | 0.109885 | -0.172745 | 0.256753 | -0.437180 | -0.085041 | 0.534017 | -0.174262 | -0.109797 | -0.229347 | 0.015683 | -0.111461 | -0.350344 | -0.210248 | -0.401559 | -0.290374 | -0.463418 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -0.288416 | 0.677296 | -0.694405 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | 0.606766 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | 0.732822 | -0.213201 | 0.556288 | 0.561766 | 1.556719 | 1.830379 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.899668 | 1.540314 | -0.410105 | -2.063646 | -0.509368 | -0.662030 | -0.522169 | 0.037557 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | 0.799076 | -0.362143 | 0.413793 | -0.556890 | -0.278572 | -0.274281 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.402920 | -0.005825 | -0.734232 | 1.563723 | 0.183675 | 0.200628 | -0.163011 | -0.363060 | 0.183853 | -0.040705 | 0.471495 | 0.845016 | -0.055272 | -0.395340 | 0.229561 | -0.309671 | 0.042430 | -0.172341 | -0.582692 | -0.526883 | -0.970017 | 0.047138 | -0.616358 | 0.207388 | 0.112309 | 0.157398 | -0.722995 | 0.556356 | -0.560003 | 0.257622 | 0.112980 | -0.367147 | 0.213799 | -0.093517 | -0.101010 | -0.299173 | 0.233383 | 0.015376 | 0.661861 | -0.397483 | -0.007674 | -0.020725 | 0.580397 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | 0.466515 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 1.732827 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 1.955677 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | 1.722814 | -0.611041 | -0.435773 | -0.440926 | 1.075912 | -0.769976 | -0.626017 | -0.285797 | -0.692565 | -0.628416 | -0.314340 | 1.137342 | -0.379254 | 0.028423 | 2.481339 | 1.127953 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.556890 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.124128 | -0.559184 | 1.300123 | 0.280635 | -0.473019 | -0.410698 | 1.935219 | 1.932746 | -0.649584 | 2.010995 | 0.251582 | -0.617142 | 0.943337 | -0.694539 | 0.242444 | -0.316691 | 0.445994 | -0.103504 | -0.928071 | -0.526259 | -0.043918 | 0.556229 | -0.562001 | -0.523909 | -1.453514 | -1.038963 | -0.702544 | 0.833573 | -0.648508 | -0.641610 | -0.724841 | -0.737085 | -0.712697 | -0.825083 | -0.563530 | -0.732682 | -0.788433 | -0.918720 | 0.570570 | -0.418096 | -0.521056 | -0.836672 | -1.023990 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | 1.021053 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | 0.634977 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.800756 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.131058 | 0.586510 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.733998 | 1.616607 | -0.450977 | -0.081738 | -0.543976 | -1.334746 | 0.505208 | 0.738526 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.614352 | -0.556890 | -0.890879 | -0.783861 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.445444 | -0.776063 | 1.113066 | -1.254281 | -0.843553 | -0.133065 | 0.327619 | -0.289030 |
2 | 0.183853 | -0.040705 | 0.471495 | 0.845016 | -0.055272 | -0.395340 | 0.229561 | -0.309671 | 0.042430 | -0.172341 | -0.582692 | -0.526883 | -0.970017 | 0.047138 | -0.616358 | 0.207388 | 0.112309 | 0.157398 | -0.722995 | 0.556356 | -0.560003 | 0.257622 | 0.112980 | -0.367147 | 0.213799 | -0.093517 | -0.101010 | -0.299173 | 0.233383 | 0.015376 | 0.661861 | -0.397483 | -0.007674 | -0.020725 | 0.580397 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | 0.466515 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 1.732827 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 1.955677 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 1.722814 | -0.611041 | -0.435773 | -0.440926 | 1.075912 | -0.769976 | -0.626017 | -0.285797 | -0.692565 | -0.628416 | -0.314340 | 1.137342 | -0.379254 | 0.028423 | 2.481339 | 1.127953 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.556890 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.124128 | -0.559184 | 1.300123 | 0.280635 | -0.473019 | -0.410698 | 1.935219 | 1.932746 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.66116 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -0.199070 | -0.196860 | 0.224007 | -0.627784 | -0.394568 | -0.371910 | 0.231481 | -0.310718 | -0.495657 | -0.723037 | -0.977411 | -0.526861 | 0.037796 | 0.190379 | 0.297780 | -0.592024 | -0.504954 | -0.619696 | -0.722995 | 0.822870 | -0.270438 | -0.521601 | -0.613028 | -0.367147 | -0.613711 | -0.746924 | -0.693098 | -0.854123 | -0.540266 | -0.691858 | -0.547747 | -0.397483 | -0.269302 | -0.442263 | 0.200980 | 0.553168 | -0.113045 | -0.213201 | 3.240370 | -0.521596 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.110102 | 0.060693 | 0.472964 | -0.432331 | 1.374052 | -0.366786 | -0.695145 | -0.511968 | -0.308607 | 1.482744 | -0.227779 | 0.433147 | -0.458430 | -0.324416 | -0.213201 | 0.789430 | 0.550350 | 1.556719 | 0.453765 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -0.626017 | -0.285797 | 0.903469 | -0.684978 | 1.613645 | -1.520317 | -0.546422 | -0.738746 | -0.522169 | -0.429755 | 0.963863 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | -0.036322 | -0.362143 | -0.377578 | -0.55689 | -1.530258 | -0.574628 | -0.308607 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | -0.554019 | -0.398062 | -0.387169 | -0.066648 | -0.218467 | 0.155439 | 0.121708 | 0.421832 | -0.124642 | -1.151814 | 0.457250 | 0.412672 | 0.006418 | -0.743483 | 0.230873 | -0.310386 | -0.159353 | -0.723037 | -1.372129 | -0.526870 | -0.860539 | 0.334100 | -0.671297 | -0.041017 | -0.566928 | -0.222612 | -0.702544 | 0.833573 | -0.656113 | -0.247066 | -0.357242 | -0.737085 | -0.344148 | -0.534075 | -0.177197 | -0.370581 | -0.588272 | -0.735742 | 0.661861 | -0.418096 | -0.501311 | -0.806176 | -1.002062 | ... | -1.807243 | -0.955395 | 4.690416 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | 2.581989 | -1.707117 | -0.362143 | -1.615163 | 1.272892 | 0.429755 | -0.649469 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 1.543487 | -2.525343 | -0.213201 | -0.213201 | -0.213201 | -1.034337 | -0.768981 | -0.289564 | -1.977723 | -0.827478 | 0.597322 | -0.512773 | -1.420765 | -0.649584 | 2.010995 | 0.251582 | -0.617142 | 0.943337 | -0.694539 | 0.242444 | -0.316691 | 0.445994 | -0.103504 | -0.928071 | -0.526259 | -0.043918 | 0.556229 | -0.562001 | -0.523909 | -1.453514 | -1.038963 | -0.702544 | 0.833573 | -0.648508 | -0.641610 | -0.724841 | -0.737085 | -0.712697 | -0.825083 | -0.563530 | -0.732682 | -0.788433 | -0.918720 | 0.570570 | -0.418096 | -0.521056 | -0.836672 | -1.023990 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | 1.021053 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | 0.634977 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.800756 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.131058 | 0.586510 | -0.66116 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.733998 | 1.616607 | -0.450977 | -0.081738 | -0.543976 | -1.334746 | 0.505208 | 0.738526 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.614352 | -0.556890 | -0.890879 | -0.783861 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.445444 | -0.776063 | 1.113066 | -1.254281 | -0.843553 | -0.133065 | 0.327619 | -0.289030 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | -0.649584 | 2.010995 | 0.251582 | -0.617142 | 0.943337 | -0.694539 | 0.242444 | -0.316691 | 0.445994 | -0.103504 | -0.928071 | -0.526259 | -0.043918 | 0.556229 | -0.562001 | -0.523909 | -1.453514 | -1.038963 | -0.702544 | 0.833573 | -0.648508 | -0.641610 | -0.724841 | -0.737085 | -0.712697 | -0.825083 | -0.563530 | -0.732682 | -0.788433 | -0.918720 | 0.570570 | -0.418096 | -0.521056 | -0.836672 | -1.023990 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | 1.021053 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | 0.634977 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.800756 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.131058 | 0.586510 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.733998 | 1.616607 | -0.450977 | -0.081738 | -0.543976 | -1.334746 | 0.505208 | 0.738526 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.614352 | -0.556890 | -0.890879 | -0.783861 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.445444 | -0.776063 | 1.113066 | -1.254281 | -0.843553 | -0.133065 | 0.327619 | -0.289030 |
3 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.66116 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | 0.280001 | -0.334373 | 0.630545 | 0.055833 | 3.962299 | -0.793519 | 0.230539 | -0.310204 | 0.445994 | 1.755094 | 1.292222 | -0.526815 | 0.156428 | 1.016748 | 0.338924 | 0.290406 | 0.348255 | 0.096033 | 0.928961 | -1.791428 | -0.601193 | -0.627759 | -0.711936 | -0.544819 | -0.079577 | -0.325168 | 0.513716 | 0.276996 | 0.961352 | 0.680851 | 0.661861 | -0.365611 | -1.422146 | -1.341137 | -1.740279 | -1.207619 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | 1.633996 | -2.365174 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | -0.624985 | -0.104126 | -0.884527 | -0.458430 | 0.732822 | -0.213201 | -1.508973 | -1.645349 | -0.661160 | 0.372512 | -0.621218 | 2.841313 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | -1.876177 | -0.285797 | -0.687785 | 0.161397 | -2.628012 | 0.817036 | -0.230842 | 1.127001 | 0.139624 | 0.972182 | -1.807243 | -0.955395 | 4.690416 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | 2.581989 | -1.707117 | -0.362143 | -1.615163 | 1.272892 | 0.429755 | -0.649469 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 1.543487 | -2.525343 | -0.213201 | -0.213201 | -0.213201 | -1.034337 | -0.768981 | -0.289564 | -1.977723 | -0.827478 | 0.597322 | -0.512773 | -1.420765 | 0.056275 | 0.601482 | 0.471762 | 0.965126 | -0.240342 | 0.052405 | 0.229605 | -0.309695 | 1.118602 | 1.479746 | 1.390901 | 1.989774 | 0.268481 | -0.303336 | 0.012599 | 0.028435 | 0.270933 | 0.381854 | -0.076800 | 0.075729 | -0.598016 | -0.072121 | 0.348721 | -0.256771 | -0.208879 | 0.843670 | -0.280751 | 0.706959 | -0.377127 | 0.594028 | 1.460660 | -0.378212 | 0.165098 | 1.162146 | 0.833353 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | 3.112079 | -0.647398 | 1.243491 | -0.480351 | -0.694405 | -0.688230 | 1.816859 | -0.432331 | -0.495561 | -0.366786 | 2.664147 | -0.511968 | -0.308607 | -0.482124 | 0.955547 | -0.884527 | -0.458430 | -0.324416 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 0.598568 | 0.413434 | -0.435773 | 2.273766 | 0.236285 | -0.769976 | -0.626017 | 1.721376 | -0.698907 | -0.636995 | -0.326842 | 2.026631 | -0.376824 | 1.744600 | -0.522169 | 0.972182 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | -1.091089 | -0.329293 | -0.387298 | 0.799076 | -0.362143 | 1.579684 | -0.556890 | 0.845212 | 0.327629 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | 4.690416 | -0.213201 | -0.165266 | -0.039651 | -0.552557 | 0.652353 | 0.187464 | -0.152293 | -0.420402 | 0.486664 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.55689 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | ... | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | -0.036322 | -0.362143 | -0.377578 | -0.556890 | -0.772086 | -0.727688 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.638014 | -0.373643 | -0.481565 | 0.448823 | -0.233181 | 0.343489 | 0.268100 | 0.182050 | -1.339938 | 0.444870 | 0.253486 | -0.901151 | -0.152214 | -1.042683 | 0.241000 | -0.315904 | 0.964863 | 0.693038 | -0.357138 | -0.526403 | 0.969109 | -0.533923 | 0.709041 | -1.215466 | -0.276245 | -0.137725 | -0.684106 | 0.233728 | -0.814932 | -1.262735 | -1.303547 | -1.022430 | -1.225889 | -1.230302 | -1.129809 | -1.263443 | -1.114134 | -1.216461 | 0.570570 | -0.429222 | -1.014693 | -0.929799 | -0.845377 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.162392 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -1.340339 | 1.153064 | -0.511968 | -0.308607 | -0.482124 | 0.898293 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.131058 | 0.678924 | -0.66116 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.768318 | 1.437885 | -0.514615 | -0.077221 | -0.532560 | -0.462400 | -0.911354 | 0.349099 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.556890 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | -1.573701 | 1.193554 | 0.430590 | -0.375462 | -0.086117 | -1.439770 | 0.228166 | -0.308911 | 1.656688 | 0.103007 | -0.780051 | -0.526903 | 1.203883 | -1.415519 | 1.465101 | -1.347549 | 1.162418 | 0.678178 | -1.660842 | 0.058766 | -0.928528 | -1.372879 | -1.406169 | -1.434358 | -1.395786 | -1.364454 | -1.371840 | -1.490293 | -1.312462 | -1.397762 | 0.661861 | -0.443256 | -1.488584 | -1.704924 | -1.164169 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -0.290532 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | -0.626017 | -0.285797 | -0.779939 | -0.748232 | -0.483822 | 0.342808 | -0.393932 | -0.462400 | 0.572190 | 0.349099 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.492588 | -0.556890 | -0.082356 | -1.373751 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.248334 | -1.009130 | 1.627587 | 1.033123 | -1.454953 | 1.869310 | 0.564352 | -0.990362 | -0.199070 | -0.196860 | 0.224007 | -0.627784 | -0.394568 | -0.371910 | 0.231481 | -0.310718 | -0.495657 | -0.723037 | -0.977411 | -0.526861 | 0.037796 | 0.190379 | 0.297780 | -0.592024 | -0.504954 | -0.619696 | -0.722995 | 0.822870 | -0.270438 | -0.521601 | -0.613028 | -0.367147 | -0.613711 | -0.746924 | -0.693098 | -0.854123 | -0.540266 | -0.691858 | -0.547747 | -0.397483 | -0.269302 | -0.442263 | 0.200980 | 0.553168 | -0.113045 | -0.213201 | 3.240370 | -0.521596 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.110102 | 0.060693 | 0.472964 | -0.432331 | 1.374052 | -0.366786 | -0.695145 | -0.511968 | -0.308607 | 1.482744 | -0.227779 | 0.433147 | -0.458430 | -0.324416 | -0.213201 | 0.789430 | 0.550350 | 1.556719 | 0.453765 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -0.626017 | -0.285797 | 0.903469 | -0.684978 | 1.613645 | -1.520317 | -0.546422 | -0.738746 | -0.522169 | -0.429755 | 0.963863 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | -0.036322 | -0.362143 | -0.377578 | -0.556890 | -1.530258 | -0.574628 | -0.308607 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | -0.554019 | -0.398062 | -0.387169 | -0.066648 | -0.218467 | 0.155439 | 0.121708 | 0.421832 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.661160 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 |
4 | 0.280001 | -0.334373 | 0.630545 | 0.055833 | 3.962299 | -0.793519 | 0.230539 | -0.310204 | 0.445994 | 1.755094 | 1.292222 | -0.526815 | 0.156428 | 1.016748 | 0.338924 | 0.290406 | 0.348255 | 0.096033 | 0.928961 | -1.791428 | -0.601193 | -0.627759 | -0.711936 | -0.544819 | -0.079577 | -0.325168 | 0.513716 | 0.276996 | 0.961352 | 0.680851 | 0.661861 | -0.365611 | -1.422146 | -1.341137 | -1.740279 | -1.207619 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | 1.633996 | -2.365174 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | -0.624985 | -0.104126 | -0.884527 | -0.458430 | 0.732822 | -0.213201 | -1.508973 | -1.645349 | -0.66116 | 0.372512 | -0.621218 | 2.841313 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | -1.876177 | -0.285797 | -0.687785 | 0.161397 | -2.628012 | 0.817036 | -0.230842 | 1.127001 | 0.139624 | 0.972182 | -1.807243 | -0.955395 | 4.690416 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | 2.581989 | -1.707117 | -0.362143 | -1.615163 | 1.272892 | 0.429755 | -0.649469 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 1.543487 | -2.525343 | -0.213201 | -0.213201 | -0.213201 | -1.034337 | -0.768981 | -0.289564 | -1.977723 | -0.827478 | 0.597322 | -0.512773 | -1.420765 | -0.196363 | -1.144174 | 0.263960 | -0.056770 | -0.409990 | 0.000656 | 0.028134 | -0.199915 | -1.248978 | -1.218664 | -0.661636 | -0.526379 | -0.271923 | 0.069844 | 0.109885 | -0.172745 | 0.256753 | -0.437180 | -0.085041 | 0.534017 | -0.174262 | -0.109797 | -0.229347 | 0.015683 | -0.111461 | -0.350344 | -0.210248 | -0.401559 | -0.290374 | -0.463418 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -0.288416 | 0.677296 | -0.694405 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | 0.606766 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | 0.732822 | -0.213201 | 0.556288 | 0.561766 | 1.556719 | 1.830379 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.899668 | 1.540314 | -0.410105 | -2.063646 | -0.509368 | -0.662030 | -0.522169 | 0.037557 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | 0.799076 | -0.362143 | 0.413793 | -0.556890 | -0.278572 | -0.274281 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.402920 | -0.005825 | -0.734232 | 1.563723 | 0.183675 | 0.200628 | -0.163011 | -0.363060 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.66116 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | -1.339938 | 0.444870 | 0.253486 | -0.901151 | -0.152214 | -1.042683 | 0.241000 | -0.315904 | 0.964863 | 0.693038 | -0.357138 | -0.526403 | 0.969109 | -0.533923 | 0.709041 | -1.215466 | -0.276245 | -0.137725 | -0.684106 | 0.233728 | -0.814932 | -1.262735 | -1.303547 | -1.022430 | -1.225889 | -1.230302 | -1.129809 | -1.263443 | -1.114134 | -1.216461 | 0.570570 | -0.429222 | -1.014693 | -0.929799 | -0.845377 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.162392 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -1.340339 | 1.153064 | -0.511968 | -0.308607 | -0.482124 | 0.898293 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.131058 | 0.678924 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.768318 | 1.437885 | -0.514615 | -0.077221 | -0.532560 | -0.462400 | -0.911354 | 0.349099 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.55689 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | 0.152079 | -1.150286 | 0.309664 | -0.331836 | -0.409990 | -0.023766 | 0.229566 | -0.309674 | -0.764700 | -0.723037 | -0.306389 | -0.526878 | -0.317935 | -0.018651 | 0.048713 | -0.220755 | 0.095997 | 0.257488 | -0.085041 | 0.534017 | -0.163183 | -0.016913 | -0.142807 | 0.015683 | -0.036322 | -0.291014 | -0.146932 | -0.342215 | -0.242671 | -0.419810 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | ... | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -1.339938 | 0.444870 | 0.253486 | -0.901151 | -0.152214 | -1.042683 | 0.241000 | -0.315904 | 0.964863 | 0.693038 | -0.357138 | -0.526403 | 0.969109 | -0.533923 | 0.709041 | -1.215466 | -0.276245 | -0.137725 | -0.684106 | 0.233728 | -0.814932 | -1.262735 | -1.303547 | -1.022430 | -1.225889 | -1.230302 | -1.129809 | -1.263443 | -1.114134 | -1.216461 | 0.570570 | -0.429222 | -1.014693 | -0.929799 | -0.845377 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.162392 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -1.340339 | 1.153064 | -0.511968 | -0.308607 | -0.482124 | 0.898293 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.131058 | 0.678924 | -0.66116 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.768318 | 1.437885 | -0.514615 | -0.077221 | -0.532560 | -0.462400 | -0.911354 | 0.349099 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.556890 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | -0.649584 | 2.010995 | 0.251582 | -0.617142 | 0.943337 | -0.694539 | 0.242444 | -0.316691 | 0.445994 | -0.103504 | -0.928071 | -0.526259 | -0.043918 | 0.556229 | -0.562001 | -0.523909 | -1.453514 | -1.038963 | -0.702544 | 0.833573 | -0.648508 | -0.641610 | -0.724841 | -0.737085 | -0.712697 | -0.825083 | -0.563530 | -0.732682 | -0.788433 | -0.918720 | 0.570570 | -0.418096 | -0.521056 | -0.836672 | -1.023990 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | 1.021053 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | 0.634977 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.800756 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.131058 | 0.586510 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.733998 | 1.616607 | -0.450977 | -0.081738 | -0.543976 | -1.334746 | 0.505208 | 0.738526 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.614352 | -0.556890 | -0.890879 | -0.783861 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.445444 | -0.776063 | 1.113066 | -1.254281 | -0.843553 | -0.133065 | 0.327619 | -0.289030 | 0.273924 | 0.496819 | 0.454982 | -0.321846 | -0.271187 | -0.022674 | 0.229538 | -0.309659 | -0.764700 | -0.227411 | 0.404105 | -0.526884 | -0.507799 | -0.278604 | -0.144944 | -0.009012 | 0.363246 | 0.280423 | 0.120964 | -0.028294 | -0.518273 | 0.344213 | 0.193657 | 0.126058 | 0.612544 | 0.221334 | 0.373675 | 0.145739 | 0.292756 | 0.069652 | 0.570570 | -0.326143 | 0.466217 | 1.718590 | 0.827571 | 0.553168 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.104345 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.374052 | 1.580319 | 1.135685 | -0.511968 | -0.308607 | 1.482744 | -0.104126 | -0.884527 | -0.458430 | 1.790059 | -0.213201 | 0.102084 | -0.535127 | -0.661160 | -0.922850 | 1.841899 | 1.675814 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.624142 | -0.285797 | -0.688087 | -0.623190 | 1.992128 | 0.400658 | -0.388534 | 1.465670 | -0.056724 | 1.127953 | 0.963863 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | 1.634474 | -0.362143 | 1.951090 | -0.556890 | 0.055666 | 0.318437 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | 1.942572 | -0.213201 | -0.213201 | 4.690416 | -0.646874 | 0.627969 | -1.587382 | 0.992529 | 1.213578 | 0.439482 | -1.197707 | -0.877851 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
30639 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.66116 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.661160 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | -1.088274 | -2.991634 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.144933 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -2.256429 | 1.135685 | -0.511968 | -0.308607 | -0.482124 | -1.275893 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.945646 | -1.645349 | -0.66116 | 0.480336 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.835328 | -1.876177 | -0.285797 | -0.833930 | -0.821329 | -0.600834 | 0.333776 | -0.136249 | -0.462400 | -0.736399 | -0.429755 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | -0.196363 | -1.144174 | 0.263960 | -0.056770 | -0.409990 | 0.000656 | 0.028134 | -0.199915 | -1.248978 | -1.218664 | -0.661636 | -0.526379 | -0.271923 | 0.069844 | 0.109885 | -0.172745 | 0.256753 | -0.437180 | -0.085041 | 0.534017 | -0.174262 | -0.109797 | -0.229347 | 0.015683 | -0.111461 | -0.350344 | -0.210248 | -0.401559 | -0.290374 | -0.463418 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -0.288416 | 0.677296 | -0.694405 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | 0.606766 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | 0.732822 | -0.213201 | 0.556288 | 0.561766 | 1.556719 | 1.830379 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.899668 | 1.540314 | -0.410105 | -2.063646 | -0.509368 | -0.662030 | -0.522169 | 0.037557 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | 0.799076 | -0.362143 | 0.413793 | -0.55689 | -0.278572 | -0.274281 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.402920 | -0.005825 | -0.734232 | 1.563723 | 0.183675 | 0.200628 | -0.163011 | -0.363060 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | ... | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.66116 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | -0.124642 | -1.151814 | 0.457250 | 0.412672 | 0.006418 | -0.743483 | 0.230873 | -0.310386 | -0.159353 | -0.723037 | -1.372129 | -0.526870 | -0.860539 | 0.334100 | -0.671297 | -0.041017 | -0.566928 | -0.222612 | -0.702544 | 0.833573 | -0.656113 | -0.247066 | -0.357242 | -0.737085 | -0.344148 | -0.534075 | -0.177197 | -0.370581 | -0.588272 | -0.735742 | 0.661861 | -0.418096 | -0.501311 | -0.806176 | -1.002062 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | -0.352571 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 0.759275 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 0.898439 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | 0.345941 | -0.621218 | -0.611041 | -0.435773 | 2.755129 | -0.455591 | -0.769976 | -0.626017 | -0.285797 | -0.707901 | -0.649778 | -0.340124 | 0.446687 | -0.387409 | -0.462400 | 2.218121 | 0.972182 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.871719 | -0.362143 | -0.570723 | -0.556890 | 0.722371 | -0.473812 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.433969 | -0.767264 | 1.037269 | -1.394782 | -0.772235 | -0.163592 | -0.288000 | -0.791228 | 1.878843 | -0.076765 | 0.423187 | 1.918606 | -0.308202 | 1.417827 | 0.231081 | -0.310499 | -0.926126 | 0.268215 | 1.943508 | -0.526882 | -0.918950 | 0.324822 | -0.240361 | 0.996900 | -0.043327 | 0.418482 | 2.649262 | -1.845344 | 2.899623 | 1.905926 | 1.648716 | 2.040820 | 2.171503 | 1.452295 | 2.602939 | 2.235178 | 2.813781 | 2.374254 | -2.168167 | 3.189220 | 0.635984 | 0.268774 | -1.068031 | 0.338546 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 1.483334 | 0.376082 | 3.760314 | -0.694405 | -0.688230 | 1.619693 | 1.504652 | -0.495561 | -0.366786 | -0.695145 | 2.319950 | -0.308607 | -0.482124 | -0.406826 | 0.880095 | -0.458430 | -0.465588 | 4.690416 | -0.309841 | -0.535127 | -0.661160 | -0.922850 | 0.598568 | 2.321311 | -0.435773 | -0.440926 | 2.913480 | 0.625431 | -0.626017 | -0.285797 | -0.105289 | -0.234209 | 0.668724 | 0.325251 | 2.299100 | 1.461545 | -0.522169 | -1.916659 | 0.040161 | -0.222925 | -0.213201 | 2.179449 | 3.240370 | 3.287980 | -0.213201 | -1.192079 | 0.163663 | -0.329293 | 2.581989 | -0.036322 | -0.362143 | -0.620949 | 3.102673 | 2.073493 | 2.193864 | -0.308607 | -0.308607 | 1.942572 | -0.458831 | -0.213201 | 1.543487 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 1.459750 | 1.183813 | -0.908770 | -0.606055 | 1.252496 | -1.028240 | -1.380722 | -0.907490 | 0.280001 | -0.334373 | 0.630545 | 0.055833 | 3.962299 | -0.793519 | 0.230539 | -0.310204 | 0.445994 | 1.755094 | 1.292222 | -0.526815 | 0.156428 | 1.016748 | 0.338924 | 0.290406 | 0.348255 | 0.096033 | 0.928961 | -1.791428 | -0.601193 | -0.627759 | -0.711936 | -0.544819 | -0.079577 | -0.325168 | 0.513716 | 0.276996 | 0.961352 | 0.680851 | 0.661861 | -0.365611 | -1.422146 | -1.341137 | -1.740279 | -1.207619 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | 1.633996 | -2.365174 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | -0.624985 | -0.104126 | -0.884527 | -0.458430 | 0.732822 | -0.213201 | -1.508973 | -1.645349 | -0.661160 | 0.372512 | -0.621218 | 2.841313 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | -1.876177 | -0.285797 | -0.687785 | 0.161397 | -2.628012 | 0.817036 | -0.230842 | 1.127001 | 0.139624 | 0.972182 | -1.807243 | -0.955395 | 4.690416 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | 2.581989 | -1.707117 | -0.362143 | -1.615163 | 1.272892 | 0.429755 | -0.649469 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 1.543487 | -2.525343 | -0.213201 | -0.213201 | -0.213201 | -1.034337 | -0.768981 | -0.289564 | -1.977723 | -0.827478 | 0.597322 | -0.512773 | -1.420765 |
30640 | -1.339938 | 0.444870 | 0.253486 | -0.901151 | -0.152214 | -1.042683 | 0.241000 | -0.315904 | 0.964863 | 0.693038 | -0.357138 | -0.526403 | 0.969109 | -0.533923 | 0.709041 | -1.215466 | -0.276245 | -0.137725 | -0.684106 | 0.233728 | -0.814932 | -1.262735 | -1.303547 | -1.022430 | -1.225889 | -1.230302 | -1.129809 | -1.263443 | -1.114134 | -1.216461 | 0.570570 | -0.429222 | -1.014693 | -0.929799 | -0.845377 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.162392 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -1.340339 | 1.153064 | -0.511968 | -0.308607 | -0.482124 | 0.898293 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.131058 | 0.678924 | -0.66116 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.768318 | 1.437885 | -0.514615 | -0.077221 | -0.532560 | -0.462400 | -0.911354 | 0.349099 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.556890 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | -1.339938 | 0.444870 | 0.253486 | -0.901151 | -0.152214 | -1.042683 | 0.241000 | -0.315904 | 0.964863 | 0.693038 | -0.357138 | -0.526403 | 0.969109 | -0.533923 | 0.709041 | -1.215466 | -0.276245 | -0.137725 | -0.684106 | 0.233728 | -0.814932 | -1.262735 | -1.303547 | -1.022430 | -1.225889 | -1.230302 | -1.129809 | -1.263443 | -1.114134 | -1.216461 | 0.570570 | -0.429222 | -1.014693 | -0.929799 | -0.845377 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.162392 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -1.340339 | 1.153064 | -0.511968 | -0.308607 | -0.482124 | 0.898293 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.131058 | 0.678924 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.768318 | 1.437885 | -0.514615 | -0.077221 | -0.532560 | -0.462400 | -0.911354 | 0.349099 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.556890 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | 1.123589 | -0.692988 | 0.383419 | 1.247929 | -0.442022 | 0.846034 | -4.682939 | 2.367128 | -1.323482 | -1.104288 | -0.005795 | -0.526875 | -0.849974 | -0.013828 | -0.395900 | 0.628824 | -0.049221 | 0.413700 | 0.821080 | -1.196554 | 1.157294 | 1.099306 | 0.897182 | 1.206775 | 1.178708 | 0.668380 | 1.196305 | 0.916772 | 1.159312 | 0.861817 | -1.574774 | 0.284577 | 0.538947 | 0.433550 | -0.359876 | 0.373629 | 2.626266 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.773090 | 1.969038 | -0.480351 | -0.694405 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -0.366786 | -0.695145 | 1.832828 | 3.240370 | -0.482124 | -0.383059 | 0.880095 | -0.458430 | -0.465588 | -0.213201 | -0.131058 | -0.535127 | -0.66116 | 1.686452 | -0.621218 | 0.379705 | 1.713726 | 2.359360 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.645847 | 1.867884 | 0.087145 | 0.542836 | 1.774819 | -0.218804 | -0.522169 | -1.727845 | 0.040161 | -0.222925 | -0.213201 | 2.179449 | -0.308607 | 1.397391 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.036322 | -0.362143 | -0.160777 | 1.272892 | 1.092159 | 1.192981 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.970825 | 0.542707 | -0.508982 | 0.070390 | 0.725607 | -0.834255 | -0.508966 | 0.575880 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.55689 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | -1.573701 | 1.193554 | 0.430590 | -0.375462 | -0.086117 | -1.439770 | 0.228166 | -0.308911 | 1.656688 | 0.103007 | -0.780051 | -0.526903 | 1.203883 | -1.415519 | 1.465101 | -1.347549 | 1.162418 | 0.678178 | -1.660842 | 0.058766 | -0.928528 | -1.372879 | -1.406169 | -1.434358 | -1.395786 | -1.364454 | -1.371840 | -1.490293 | -1.312462 | -1.397762 | 0.661861 | -0.443256 | -1.488584 | -1.704924 | -1.164169 | ... | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.556890 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.66116 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | 0.183853 | -0.040705 | 0.471495 | 0.845016 | -0.055272 | -0.395340 | 0.229561 | -0.309671 | 0.042430 | -0.172341 | -0.582692 | -0.526883 | -0.970017 | 0.047138 | -0.616358 | 0.207388 | 0.112309 | 0.157398 | -0.722995 | 0.556356 | -0.560003 | 0.257622 | 0.112980 | -0.367147 | 0.213799 | -0.093517 | -0.101010 | -0.299173 | 0.233383 | 0.015376 | 0.661861 | -0.397483 | -0.007674 | -0.020725 | 0.580397 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | 0.466515 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 1.732827 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 1.955677 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | 1.722814 | -0.611041 | -0.435773 | -0.440926 | 1.075912 | -0.769976 | -0.626017 | -0.285797 | -0.692565 | -0.628416 | -0.314340 | 1.137342 | -0.379254 | 0.028423 | 2.481339 | 1.127953 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.556890 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.124128 | -0.559184 | 1.300123 | 0.280635 | -0.473019 | -0.410698 | 1.935219 | 1.932746 | -0.649584 | 2.010995 | 0.251582 | -0.617142 | 0.943337 | -0.694539 | 0.242444 | -0.316691 | 0.445994 | -0.103504 | -0.928071 | -0.526259 | -0.043918 | 0.556229 | -0.562001 | -0.523909 | -1.453514 | -1.038963 | -0.702544 | 0.833573 | -0.648508 | -0.641610 | -0.724841 | -0.737085 | -0.712697 | -0.825083 | -0.563530 | -0.732682 | -0.788433 | -0.918720 | 0.570570 | -0.418096 | -0.521056 | -0.836672 | -1.023990 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | 1.021053 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | 0.634977 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.800756 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.131058 | 0.586510 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.733998 | 1.616607 | -0.450977 | -0.081738 | -0.543976 | -1.334746 | 0.505208 | 0.738526 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.614352 | -0.556890 | -0.890879 | -0.783861 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.445444 | -0.776063 | 1.113066 | -1.254281 | -0.843553 | -0.133065 | 0.327619 | -0.289030 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 |
30641 | 0.056275 | 0.601482 | 0.471762 | 0.965126 | -0.240342 | 0.052405 | 0.229605 | -0.309695 | 1.118602 | 1.479746 | 1.390901 | 1.989774 | 0.268481 | -0.303336 | 0.012599 | 0.028435 | 0.270933 | 0.381854 | -0.076800 | 0.075729 | -0.598016 | -0.072121 | 0.348721 | -0.256771 | -0.208879 | 0.843670 | -0.280751 | 0.706959 | -0.377127 | 0.594028 | 1.460660 | -0.378212 | 0.165098 | 1.162146 | 0.833353 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | 3.112079 | -0.647398 | 1.243491 | -0.480351 | -0.694405 | -0.688230 | 1.816859 | -0.432331 | -0.495561 | -0.366786 | 2.664147 | -0.511968 | -0.308607 | -0.482124 | 0.955547 | -0.884527 | -0.458430 | -0.324416 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 0.598568 | 0.413434 | -0.435773 | 2.273766 | 0.236285 | -0.769976 | -0.626017 | 1.721376 | -0.698907 | -0.636995 | -0.326842 | 2.026631 | -0.376824 | 1.744600 | -0.522169 | 0.972182 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | -1.091089 | -0.329293 | -0.387298 | 0.799076 | -0.362143 | 1.579684 | -0.556890 | 0.845212 | 0.327629 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | 4.690416 | -0.213201 | -0.165266 | -0.039651 | -0.552557 | 0.652353 | 0.187464 | -0.152293 | -0.420402 | 0.486664 | -0.680115 | 0.536545 | 0.158193 | -0.369303 | -0.394568 | -0.347487 | 0.037668 | -0.205110 | -1.033743 | -1.273733 | -1.372129 | -0.525782 | 0.115873 | 0.346261 | 0.398995 | -0.516138 | -0.084662 | -3.545366 | -0.722995 | 0.822870 | -0.281516 | -0.614485 | -0.699568 | -0.367147 | -0.688851 | -0.806254 | -0.744794 | -0.902577 | -0.612948 | -0.758300 | -0.547747 | -0.397483 | -0.269302 | -0.442263 | 0.200980 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.110102 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | -0.366786 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | -0.324416 | -0.213201 | 0.556288 | 1.741627 | 1.556719 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.858162 | 1.474811 | -0.483206 | -2.651958 | -0.590457 | -0.936726 | -0.522169 | -0.429755 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | -0.036322 | -0.362143 | -0.377578 | -0.556890 | -0.772086 | -0.727688 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.638014 | -0.373643 | -0.481565 | 0.448823 | -0.233181 | 0.343489 | 0.268100 | 0.182050 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.66116 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | -1.339938 | 0.444870 | 0.253486 | -0.901151 | -0.152214 | -1.042683 | 0.241000 | -0.315904 | 0.964863 | 0.693038 | -0.357138 | -0.526403 | 0.969109 | -0.533923 | 0.709041 | -1.215466 | -0.276245 | -0.137725 | -0.684106 | 0.233728 | -0.814932 | -1.262735 | -1.303547 | -1.022430 | -1.225889 | -1.230302 | -1.129809 | -1.263443 | -1.114134 | -1.216461 | 0.570570 | -0.429222 | -1.014693 | -0.929799 | -0.845377 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.162392 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -1.340339 | 1.153064 | -0.511968 | -0.308607 | -0.482124 | 0.898293 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.131058 | 0.678924 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.768318 | 1.437885 | -0.514615 | -0.077221 | -0.532560 | -0.462400 | -0.911354 | 0.349099 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.55689 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | 0.273924 | 0.496819 | 0.454982 | -0.321846 | -0.271187 | -0.022674 | 0.229538 | -0.309659 | -0.764700 | -0.227411 | 0.404105 | -0.526884 | -0.507799 | -0.278604 | -0.144944 | -0.009012 | 0.363246 | 0.280423 | 0.120964 | -0.028294 | -0.518273 | 0.344213 | 0.193657 | 0.126058 | 0.612544 | 0.221334 | 0.373675 | 0.145739 | 0.292756 | 0.069652 | 0.570570 | -0.326143 | 0.466217 | 1.718590 | 0.827571 | ... | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -2.665009 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.570724 | -0.556890 | -0.573846 | -1.824997 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.661486 | -1.114165 | 0.490377 | -1.650130 | -1.730851 | 3.382363 | 0.372204 | -0.634367 | 1.065996 | 0.050359 | 0.433525 | 1.825444 | -0.433124 | 0.448946 | 0.231079 | -0.310499 | -1.168265 | -0.723037 | 0.404105 | -0.526883 | -0.818551 | -0.069808 | -0.311742 | 0.192350 | -0.048318 | 0.413831 | 0.726870 | -1.313071 | 0.839266 | 0.835321 | 0.651226 | 0.905222 | 1.023632 | 0.545931 | 1.014313 | 0.746194 | 1.113758 | 0.820173 | -1.118318 | 0.057815 | 0.147277 | 0.399290 | -0.669480 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 2.903823 | 0.421299 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -0.366786 | -0.695145 | 2.309694 | -0.308607 | -0.482124 | -1.373429 | 0.880095 | -0.458430 | -0.465588 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 0.598568 | 0.379705 | -0.435773 | -0.440926 | 2.899050 | -0.769976 | -0.626017 | -0.285797 | -0.648710 | -0.570587 | 0.165606 | 0.349769 | 2.873511 | -0.119319 | -0.522169 | -1.727845 | -0.883541 | -0.955395 | -0.213201 | 2.179449 | -0.308607 | 1.397391 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | -0.207483 | 1.272892 | 1.464603 | 1.029491 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.099860 | 0.486760 | -1.163556 | 0.319299 | 0.775477 | -0.245278 | -1.215224 | -0.891051 | 0.280001 | -0.334373 | 0.630545 | 0.055833 | 3.962299 | -0.793519 | 0.230539 | -0.310204 | 0.445994 | 1.755094 | 1.292222 | -0.526815 | 0.156428 | 1.016748 | 0.338924 | 0.290406 | 0.348255 | 0.096033 | 0.928961 | -1.791428 | -0.601193 | -0.627759 | -0.711936 | -0.544819 | -0.079577 | -0.325168 | 0.513716 | 0.276996 | 0.961352 | 0.680851 | 0.661861 | -0.365611 | -1.422146 | -1.341137 | -1.740279 | -1.207619 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | 1.633996 | -2.365174 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | -0.624985 | -0.104126 | -0.884527 | -0.458430 | 0.732822 | -0.213201 | -1.508973 | -1.645349 | -0.661160 | 0.372512 | -0.621218 | 2.841313 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | -1.876177 | -0.285797 | -0.687785 | 0.161397 | -2.628012 | 0.817036 | -0.230842 | 1.127001 | 0.139624 | 0.972182 | -1.807243 | -0.955395 | 4.690416 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | 2.581989 | -1.707117 | -0.362143 | -1.615163 | 1.272892 | 0.429755 | -0.649469 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 1.543487 | -2.525343 | -0.213201 | -0.213201 | -0.213201 | -1.034337 | -0.768981 | -0.289564 | -1.977723 | -0.827478 | 0.597322 | -0.512773 | -1.420765 | 0.280001 | -0.334373 | 0.630545 | 0.055833 | 3.962299 | -0.793519 | 0.230539 | -0.310204 | 0.445994 | 1.755094 | 1.292222 | -0.526815 | 0.156428 | 1.016748 | 0.338924 | 0.290406 | 0.348255 | 0.096033 | 0.928961 | -1.791428 | -0.601193 | -0.627759 | -0.711936 | -0.544819 | -0.079577 | -0.325168 | 0.513716 | 0.276996 | 0.961352 | 0.680851 | 0.661861 | -0.365611 | -1.422146 | -1.341137 | -1.740279 | -1.207619 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | 1.633996 | -2.365174 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | -0.624985 | -0.104126 | -0.884527 | -0.458430 | 0.732822 | -0.213201 | -1.508973 | -1.645349 | -0.661160 | 0.372512 | -0.621218 | 2.841313 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | -1.876177 | -0.285797 | -0.687785 | 0.161397 | -2.628012 | 0.817036 | -0.230842 | 1.127001 | 0.139624 | 0.972182 | -1.807243 | -0.955395 | 4.690416 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | 2.581989 | -1.707117 | -0.362143 | -1.615163 | 1.272892 | 0.429755 | -0.649469 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 1.543487 | -2.525343 | -0.213201 | -0.213201 | -0.213201 | -1.034337 | -0.768981 | -0.289564 | -1.977723 | -0.827478 | 0.597322 | -0.512773 | -1.420765 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.556890 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 |
30642 | 1.065996 | 0.050359 | 0.433525 | 1.825444 | -0.433124 | 0.448946 | 0.231079 | -0.310499 | -1.168265 | -0.723037 | 0.404105 | -0.526883 | -0.818551 | -0.069808 | -0.311742 | 0.192350 | -0.048318 | 0.413831 | 0.726870 | -1.313071 | 0.839266 | 0.835321 | 0.651226 | 0.905222 | 1.023632 | 0.545931 | 1.014313 | 0.746194 | 1.113758 | 0.820173 | -1.118318 | 0.057815 | 0.147277 | 0.399290 | -0.669480 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 2.903823 | 0.421299 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -0.366786 | -0.695145 | 2.309694 | -0.308607 | -0.482124 | -1.373429 | 0.880095 | -0.458430 | -0.465588 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 0.598568 | 0.379705 | -0.435773 | -0.440926 | 2.899050 | -0.769976 | -0.626017 | -0.285797 | -0.648710 | -0.570587 | 0.165606 | 0.349769 | 2.873511 | -0.119319 | -0.522169 | -1.727845 | -0.883541 | -0.955395 | -0.213201 | 2.179449 | -0.308607 | 1.397391 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | -0.207483 | 1.272892 | 1.464603 | 1.029491 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.099860 | 0.486760 | -1.163556 | 0.319299 | 0.775477 | -0.245278 | -1.215224 | -0.891051 | 0.273924 | 0.496819 | 0.454982 | -0.321846 | -0.271187 | -0.022674 | 0.229538 | -0.309659 | -0.764700 | -0.227411 | 0.404105 | -0.526884 | -0.507799 | -0.278604 | -0.144944 | -0.009012 | 0.363246 | 0.280423 | 0.120964 | -0.028294 | -0.518273 | 0.344213 | 0.193657 | 0.126058 | 0.612544 | 0.221334 | 0.373675 | 0.145739 | 0.292756 | 0.069652 | 0.570570 | -0.326143 | 0.466217 | 1.718590 | 0.827571 | 0.553168 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.104345 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.374052 | 1.580319 | 1.135685 | -0.511968 | -0.308607 | 1.482744 | -0.104126 | -0.884527 | -0.458430 | 1.790059 | -0.213201 | 0.102084 | -0.535127 | -0.661160 | -0.922850 | 1.841899 | 1.675814 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.624142 | -0.285797 | -0.688087 | -0.623190 | 1.992128 | 0.400658 | -0.388534 | 1.465670 | -0.056724 | 1.127953 | 0.963863 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | 1.634474 | -0.362143 | 1.951090 | -0.556890 | 0.055666 | 0.318437 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | 1.942572 | -0.213201 | -0.213201 | 4.690416 | -0.646874 | 0.627969 | -1.587382 | 0.992529 | 1.213578 | 0.439482 | -1.197707 | -0.877851 | -0.124642 | -1.151814 | 0.457250 | 0.412672 | 0.006418 | -0.743483 | 0.230873 | -0.310386 | -0.159353 | -0.723037 | -1.372129 | -0.526870 | -0.860539 | 0.334100 | -0.671297 | -0.041017 | -0.566928 | -0.222612 | -0.702544 | 0.833573 | -0.656113 | -0.247066 | -0.357242 | -0.737085 | -0.344148 | -0.534075 | -0.177197 | -0.370581 | -0.588272 | -0.735742 | 0.661861 | -0.418096 | -0.501311 | -0.806176 | -1.002062 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | -0.352571 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 0.759275 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 0.898439 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | 0.345941 | -0.621218 | -0.611041 | -0.435773 | 2.755129 | -0.455591 | -0.769976 | -0.626017 | -0.285797 | -0.707901 | -0.649778 | -0.340124 | 0.446687 | -0.387409 | -0.462400 | 2.218121 | 0.972182 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.871719 | -0.362143 | -0.570723 | -0.556890 | 0.722371 | -0.473812 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.433969 | -0.767264 | 1.037269 | -1.394782 | -0.772235 | -0.163592 | -0.288000 | -0.791228 | 0.529107 | -0.850496 | 0.398464 | -2.686513 | -0.525659 | 0.672620 | 0.229539 | -0.309659 | 0.042430 | 0.516029 | 0.996183 | -0.526883 | -0.301723 | -0.225347 | -0.479661 | -0.220456 | -0.418278 | 0.289905 | 0.415667 | 0.169350 | 0.060175 | 0.910130 | 0.720925 | 0.781342 | 0.882740 | 0.434681 | 0.447828 | 0.215241 | 0.385311 | 0.154262 | -1.004204 | -0.151171 | 1.112881 | 1.885100 | 1.755861 | 2.075265 | -0.113045 | 4.690416 | -0.308607 | -0.521596 | 1.273176 | -0.458413 | -0.308393 | -0.647398 | 0.530671 | 0.699641 | -0.694405 | -0.688230 | 0.484986 | 1.633996 | 1.374052 | 0.606766 | 1.135685 | -0.511968 | -0.308607 | 3.304752 | 1.051682 | -0.884527 | 2.003899 | 0.732822 | -0.213201 | 1.546840 | -0.535127 | -0.661160 | 0.354870 | 3.061686 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | 0.718611 | 1.803574 | -0.285797 | -0.675401 | 1.932760 | 1.901386 | 0.047833 | -0.425325 | 0.406110 | -0.150087 | 0.349099 | 2.811268 | 1.242013 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 2.673169 | 0.932996 | -0.387298 | 1.634474 | -0.362143 | 1.848968 | -0.55689 | -1.039565 | 0.931759 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | 3.515721 | 1.942572 | -0.213201 | -0.213201 | -0.213201 | 0.365021 | 1.453200 | -1.473082 | 0.448914 | 1.857432 | -0.537387 | -1.777282 | -1.171321 | 0.685062 | -0.353472 | 0.394788 | 0.451496 | -0.321661 | 0.199882 | 0.231208 | -0.310569 | 1.216436 | 2.430949 | 2.503290 | -0.526881 | -0.208737 | 0.101905 | 0.110199 | -0.082449 | -0.077989 | 0.402951 | 1.880175 | -1.488058 | 0.603424 | 0.275154 | 0.129314 | 0.522393 | 0.373662 | 0.032711 | 0.402190 | 0.172465 | 0.503801 | 0.262580 | -1.141140 | -0.070838 | -0.346440 | -0.318264 | -0.911087 | ... | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.871719 | -0.362143 | -0.570723 | -0.556890 | 0.722371 | -0.473812 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.433969 | -0.767264 | 1.037269 | -1.394782 | -0.772235 | -0.163592 | -0.288000 | -0.791228 | 0.056275 | 0.601482 | 0.471762 | 0.965126 | -0.240342 | 0.052405 | 0.229605 | -0.309695 | 1.118602 | 1.479746 | 1.390901 | 1.989774 | 0.268481 | -0.303336 | 0.012599 | 0.028435 | 0.270933 | 0.381854 | -0.076800 | 0.075729 | -0.598016 | -0.072121 | 0.348721 | -0.256771 | -0.208879 | 0.843670 | -0.280751 | 0.706959 | -0.377127 | 0.594028 | 1.460660 | -0.378212 | 0.165098 | 1.162146 | 0.833353 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | 3.112079 | -0.647398 | 1.243491 | -0.480351 | -0.694405 | -0.688230 | 1.816859 | -0.432331 | -0.495561 | -0.366786 | 2.664147 | -0.511968 | -0.308607 | -0.482124 | 0.955547 | -0.884527 | -0.458430 | -0.324416 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 0.598568 | 0.413434 | -0.435773 | 2.273766 | 0.236285 | -0.769976 | -0.626017 | 1.721376 | -0.698907 | -0.636995 | -0.326842 | 2.026631 | -0.376824 | 1.744600 | -0.522169 | 0.972182 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | -1.091089 | -0.329293 | -0.387298 | 0.799076 | -0.362143 | 1.579684 | -0.556890 | 0.845212 | 0.327629 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | 4.690416 | -0.213201 | -0.165266 | -0.039651 | -0.552557 | 0.652353 | 0.187464 | -0.152293 | -0.420402 | 0.486664 | -1.573701 | 1.193554 | 0.430590 | -0.375462 | -0.086117 | -1.439770 | 0.228166 | -0.308911 | 1.656688 | 0.103007 | -0.780051 | -0.526903 | 1.203883 | -1.415519 | 1.465101 | -1.347549 | 1.162418 | 0.678178 | -1.660842 | 0.058766 | -0.928528 | -1.372879 | -1.406169 | -1.434358 | -1.395786 | -1.364454 | -1.371840 | -1.490293 | -1.312462 | -1.397762 | 0.661861 | -0.443256 | -1.488584 | -1.704924 | -1.164169 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -0.290532 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | -0.626017 | -0.285797 | -0.779939 | -0.748232 | -0.483822 | 0.342808 | -0.393932 | -0.462400 | 0.572190 | 0.349099 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -1.707117 | -0.362143 | -1.492588 | -0.556890 | -0.082356 | -1.373751 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.248334 | -1.009130 | 1.627587 | 1.033123 | -1.454953 | 1.869310 | 0.564352 | -0.990362 | 0.183853 | -0.040705 | 0.471495 | 0.845016 | -0.055272 | -0.395340 | 0.229561 | -0.309671 | 0.042430 | -0.172341 | -0.582692 | -0.526883 | -0.970017 | 0.047138 | -0.616358 | 0.207388 | 0.112309 | 0.157398 | -0.722995 | 0.556356 | -0.560003 | 0.257622 | 0.112980 | -0.367147 | 0.213799 | -0.093517 | -0.101010 | -0.299173 | 0.233383 | 0.015376 | 0.661861 | -0.397483 | -0.007674 | -0.020725 | 0.580397 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | 0.466515 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 1.732827 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 1.955677 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | 1.722814 | -0.611041 | -0.435773 | -0.440926 | 1.075912 | -0.769976 | -0.626017 | -0.285797 | -0.692565 | -0.628416 | -0.314340 | 1.137342 | -0.379254 | 0.028423 | 2.481339 | 1.127953 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.556890 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.124128 | -0.559184 | 1.300123 | 0.280635 | -0.473019 | -0.410698 | 1.935219 | 1.932746 | 0.273924 | 0.496819 | 0.454982 | -0.321846 | -0.271187 | -0.022674 | 0.229538 | -0.309659 | -0.764700 | -0.227411 | 0.404105 | -0.526884 | -0.507799 | -0.278604 | -0.144944 | -0.009012 | 0.363246 | 0.280423 | 0.120964 | -0.028294 | -0.518273 | 0.344213 | 0.193657 | 0.126058 | 0.612544 | 0.221334 | 0.373675 | 0.145739 | 0.292756 | 0.069652 | 0.570570 | -0.326143 | 0.466217 | 1.718590 | 0.827571 | 0.553168 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.104345 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.374052 | 1.580319 | 1.135685 | -0.511968 | -0.308607 | 1.482744 | -0.104126 | -0.884527 | -0.458430 | 1.790059 | -0.213201 | 0.102084 | -0.535127 | -0.661160 | -0.922850 | 1.841899 | 1.675814 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.624142 | -0.285797 | -0.688087 | -0.623190 | 1.992128 | 0.400658 | -0.388534 | 1.465670 | -0.056724 | 1.127953 | 0.963863 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | 1.634474 | -0.362143 | 1.951090 | -0.556890 | 0.055666 | 0.318437 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | 1.942572 | -0.213201 | -0.213201 | 4.690416 | -0.646874 | 0.627969 | -1.587382 | 0.992529 | 1.213578 | 0.439482 | -1.197707 | -0.877851 |
30643 | 1.123589 | -0.692988 | 0.383419 | 1.247929 | -0.442022 | 0.846034 | -4.682939 | 2.367128 | -1.323482 | -1.104288 | -0.005795 | -0.526875 | -0.849974 | -0.013828 | -0.395900 | 0.628824 | -0.049221 | 0.413700 | 0.821080 | -1.196554 | 1.157294 | 1.099306 | 0.897182 | 1.206775 | 1.178708 | 0.668380 | 1.196305 | 0.916772 | 1.159312 | 0.861817 | -1.574774 | 0.284577 | 0.538947 | 0.433550 | -0.359876 | 0.373629 | 2.626266 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.773090 | 1.969038 | -0.480351 | -0.694405 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -0.366786 | -0.695145 | 1.832828 | 3.240370 | -0.482124 | -0.383059 | 0.880095 | -0.458430 | -0.465588 | -0.213201 | -0.131058 | -0.535127 | -0.66116 | 1.686452 | -0.621218 | 0.379705 | 1.713726 | 2.359360 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.645847 | 1.867884 | 0.087145 | 0.542836 | 1.774819 | -0.218804 | -0.522169 | -1.727845 | 0.040161 | -0.222925 | -0.213201 | 2.179449 | -0.308607 | 1.397391 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.036322 | -0.362143 | -0.160777 | 1.272892 | 1.092159 | 1.192981 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.970825 | 0.542707 | -0.508982 | 0.070390 | 0.725607 | -0.834255 | -0.508966 | 0.575880 | -0.196363 | -1.144174 | 0.263960 | -0.056770 | -0.409990 | 0.000656 | 0.028134 | -0.199915 | -1.248978 | -1.218664 | -0.661636 | -0.526379 | -0.271923 | 0.069844 | 0.109885 | -0.172745 | 0.256753 | -0.437180 | -0.085041 | 0.534017 | -0.174262 | -0.109797 | -0.229347 | 0.015683 | -0.111461 | -0.350344 | -0.210248 | -0.401559 | -0.290374 | -0.463418 | -0.547747 | -0.348088 | 0.224335 | 0.361706 | 0.487383 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -0.288416 | 0.677296 | -0.694405 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | 0.606766 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | 0.732822 | -0.213201 | 0.556288 | 0.561766 | 1.556719 | 1.830379 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.899668 | 1.540314 | -0.410105 | -2.063646 | -0.509368 | -0.662030 | -0.522169 | 0.037557 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | 0.799076 | -0.362143 | 0.413793 | -0.556890 | -0.278572 | -0.274281 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.402920 | -0.005825 | -0.734232 | 1.563723 | 0.183675 | 0.200628 | -0.163011 | -0.363060 | 0.273924 | 0.496819 | 0.454982 | -0.321846 | -0.271187 | -0.022674 | 0.229538 | -0.309659 | -0.764700 | -0.227411 | 0.404105 | -0.526884 | -0.507799 | -0.278604 | -0.144944 | -0.009012 | 0.363246 | 0.280423 | 0.120964 | -0.028294 | -0.518273 | 0.344213 | 0.193657 | 0.126058 | 0.612544 | 0.221334 | 0.373675 | 0.145739 | 0.292756 | 0.069652 | 0.570570 | -0.326143 | 0.466217 | 1.718590 | 0.827571 | 0.553168 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.104345 | 1.365567 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.374052 | 1.580319 | 1.135685 | -0.511968 | -0.308607 | 1.482744 | -0.104126 | -0.884527 | -0.458430 | 1.790059 | -0.213201 | 0.102084 | -0.535127 | -0.66116 | -0.922850 | 1.841899 | 1.675814 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.624142 | -0.285797 | -0.688087 | -0.623190 | 1.992128 | 0.400658 | -0.388534 | 1.465670 | -0.056724 | 1.127953 | 0.963863 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | 1.634474 | -0.362143 | 1.951090 | -0.556890 | 0.055666 | 0.318437 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | 1.942572 | -0.213201 | -0.213201 | 4.690416 | -0.646874 | 0.627969 | -1.587382 | 0.992529 | 1.213578 | 0.439482 | -1.197707 | -0.877851 | -0.680115 | 0.536545 | 0.158193 | -0.369303 | -0.394568 | -0.347487 | 0.037668 | -0.205110 | -1.033743 | -1.273733 | -1.372129 | -0.525782 | 0.115873 | 0.346261 | 0.398995 | -0.516138 | -0.084662 | -3.545366 | -0.722995 | 0.822870 | -0.281516 | -0.614485 | -0.699568 | -0.367147 | -0.688851 | -0.806254 | -0.744794 | -0.902577 | -0.612948 | -0.758300 | -0.547747 | -0.397483 | -0.269302 | -0.442263 | 0.200980 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | 1.500960 | 1.050911 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.110102 | 0.858350 | 0.487224 | -0.432331 | -0.495561 | -0.366786 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.774640 | 0.433147 | -0.458430 | -0.324416 | -0.213201 | 0.556288 | 1.741627 | 1.556719 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | 0.858162 | 1.474811 | -0.483206 | -2.651958 | -0.590457 | -0.936726 | -0.522169 | -0.429755 | 0.040161 | 0.509544 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | 0.301852 | -0.387298 | -0.036322 | -0.362143 | -0.377578 | -0.55689 | -0.772086 | -0.727688 | 3.240370 | -0.308607 | -0.291386 | 2.179449 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.638014 | -0.373643 | -0.481565 | 0.448823 | -0.233181 | 0.343489 | 0.268100 | 0.182050 | -2.659736 | -0.303815 | 0.426781 | -0.653267 | -1.825779 | -1.787914 | 0.192416 | -0.289431 | 1.656688 | 0.268215 | -0.661636 | -0.527120 | 3.378062 | -3.610682 | 3.529379 | -2.476702 | 3.820823 | 2.339301 | -1.599718 | -0.777419 | -1.078909 | -1.994004 | -1.984875 | -1.719703 | -1.901068 | -1.763427 | -1.790074 | -1.882295 | -1.312462 | -1.397762 | 0.661861 | -0.447122 | -1.982221 | -1.750939 | 0.162382 | ... | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.556890 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.262653 | -0.624313 | 1.917789 | 0.258844 | -0.599497 | -0.498142 | 2.071889 | 1.837445 | 0.183853 | -0.040705 | 0.471495 | 0.845016 | -0.055272 | -0.395340 | 0.229561 | -0.309671 | 0.042430 | -0.172341 | -0.582692 | -0.526883 | -0.970017 | 0.047138 | -0.616358 | 0.207388 | 0.112309 | 0.157398 | -0.722995 | 0.556356 | -0.560003 | 0.257622 | 0.112980 | -0.367147 | 0.213799 | -0.093517 | -0.101010 | -0.299173 | 0.233383 | 0.015376 | 0.661861 | -0.397483 | -0.007674 | -0.020725 | 0.580397 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 0.973850 | 0.466515 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | 1.434128 | 1.732827 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | -1.373429 | -0.884527 | 2.235426 | 1.955677 | -0.213201 | -0.945646 | -0.535127 | -0.66116 | -0.922850 | 1.722814 | -0.611041 | -0.435773 | -0.440926 | 1.075912 | -0.769976 | -0.626017 | -0.285797 | -0.692565 | -0.628416 | -0.314340 | 1.137342 | -0.379254 | 0.028423 | 2.481339 | 1.127953 | -0.883541 | -0.955395 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | 0.225126 | -0.556890 | 1.215885 | -0.020405 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | 0.124128 | -0.559184 | 1.300123 | 0.280635 | -0.473019 | -0.410698 | 1.935219 | 1.932746 | -0.649584 | 2.010995 | 0.251582 | -0.617142 | 0.943337 | -0.694539 | 0.242444 | -0.316691 | 0.445994 | -0.103504 | -0.928071 | -0.526259 | -0.043918 | 0.556229 | -0.562001 | -0.523909 | -1.453514 | -1.038963 | -0.702544 | 0.833573 | -0.648508 | -0.641610 | -0.724841 | -0.737085 | -0.712697 | -0.825083 | -0.563530 | -0.732682 | -0.788433 | -0.918720 | 0.570570 | -0.418096 | -0.521056 | -0.836672 | -1.023990 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -0.224260 | -0.480351 | 1.021053 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | 0.634977 | -0.695145 | -0.511968 | -0.308607 | -0.482124 | 0.800756 | -0.884527 | -0.458430 | -0.241607 | -0.213201 | -0.131058 | 0.586510 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | 0.790873 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.733998 | 1.616607 | -0.450977 | -0.081738 | -0.543976 | -1.334746 | 0.505208 | 0.738526 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | 2.238608 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.614352 | -0.556890 | -0.890879 | -0.783861 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.445444 | -0.776063 | 1.113066 | -1.254281 | -0.843553 | -0.133065 | 0.327619 | -0.289030 | -1.339938 | 0.444870 | 0.253486 | -0.901151 | -0.152214 | -1.042683 | 0.241000 | -0.315904 | 0.964863 | 0.693038 | -0.357138 | -0.526403 | 0.969109 | -0.533923 | 0.709041 | -1.215466 | -0.276245 | -0.137725 | -0.684106 | 0.233728 | -0.814932 | -1.262735 | -1.303547 | -1.022430 | -1.225889 | -1.230302 | -1.129809 | -1.263443 | -1.114134 | -1.216461 | 0.570570 | -0.429222 | -1.014693 | -0.929799 | -0.845377 | 0.373629 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | -0.647398 | -1.107502 | -0.480351 | 1.162392 | 0.109427 | -0.882977 | -0.432331 | -0.495561 | -1.340339 | 1.153064 | -0.511968 | -0.308607 | -0.482124 | 0.898293 | -0.884527 | -0.458430 | -1.381653 | -0.213201 | -0.131058 | 0.678924 | -0.661160 | -0.922850 | -0.621218 | -0.611041 | -0.435773 | -0.440926 | -0.455591 | -0.769976 | 0.487402 | -0.285797 | -0.768318 | 1.437885 | -0.514615 | -0.077221 | -0.532560 | -0.462400 | -0.911354 | 0.349099 | 0.040161 | -0.222925 | -0.213201 | -0.458831 | -0.308607 | -0.493197 | -0.213201 | 0.331133 | 0.163663 | -0.329293 | -0.387298 | -0.871719 | -0.362143 | -0.733913 | -0.556890 | -1.382368 | -1.235107 | -0.308607 | 3.240370 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -1.083655 | -0.827633 | 0.300280 | 0.059408 | -0.982852 | 1.131568 | 0.130546 | -1.250576 | 1.065996 | 0.050359 | 0.433525 | 1.825444 | -0.433124 | 0.448946 | 0.231079 | -0.310499 | -1.168265 | -0.723037 | 0.404105 | -0.526883 | -0.818551 | -0.069808 | -0.311742 | 0.192350 | -0.048318 | 0.413831 | 0.726870 | -1.313071 | 0.839266 | 0.835321 | 0.651226 | 0.905222 | 1.023632 | 0.545931 | 1.014313 | 0.746194 | 1.113758 | 0.820173 | -1.118318 | 0.057815 | 0.147277 | 0.399290 | -0.669480 | -1.088274 | -0.113045 | -0.213201 | -0.308607 | -0.521596 | -0.682582 | -0.458413 | -0.308393 | 2.903823 | 0.421299 | -0.480351 | -0.694405 | -0.688230 | -0.882977 | -0.432331 | -0.495561 | -0.366786 | -0.695145 | 2.309694 | -0.308607 | -0.482124 | -1.373429 | 0.880095 | -0.458430 | -0.465588 | -0.213201 | -0.945646 | -0.535127 | -0.661160 | -0.922850 | 0.598568 | 0.379705 | -0.435773 | -0.440926 | 2.899050 | -0.769976 | -0.626017 | -0.285797 | -0.648710 | -0.570587 | 0.165606 | 0.349769 | 2.873511 | -0.119319 | -0.522169 | -1.727845 | -0.883541 | -0.955395 | -0.213201 | 2.179449 | -0.308607 | 1.397391 | -0.213201 | -1.192079 | -1.091089 | -0.960437 | -0.387298 | -0.036322 | -0.362143 | -0.207483 | 1.272892 | 1.464603 | 1.029491 | -0.308607 | -0.308607 | -0.291386 | -0.458831 | -0.213201 | -0.428746 | -0.291386 | -0.213201 | -0.213201 | -0.213201 | -0.099860 | 0.486760 | -1.163556 | 0.319299 | 0.775477 | -0.245278 | -1.215224 | -0.891051 |
30644 rows × 1740 columns
=reduce_feature(encoded,'umap') embedding_df
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/umap/umap_.py:1952: UserWarning: n_jobs value 1 overridden to 1 by setting random_state. Use no seed for parallelism.
warn(
=1,hue=df[SEQ_COL].str[7]) plot_2d_style(embedding_df,s
=1,hue=group_hue,palette=tab20bc) plot_2d_style(embedding_df,s
/tmp/ipykernel_7561/2523523824.py:7: UserWarning: The palette list has more values (24) than needed (9), which may not be intended.
sns.scatterplot(data = X,x=X.columns[0],y=X.columns[1],alpha=0.7,**kwargs)
=1,hue=df[SEQ_COL].str[8],palette=tab20bc,hue_order=hue_order) plot_2d_style(embedding_df,s
=1,hue=df[SEQ_COL].str[4],palette=tab20bc,hue_order=hue_order) plot_2d_style(embedding_df,s
=1,hue=Qlabel) plot_2d_style(embedding_df,s
A little bit more seperation in terms of +1P group
Onehot + physicochemical
= pd.concat([onehot,encoded],axis=1) comb
=reduce_feature(comb,'umap') comb_emb
/home/zeus/miniconda3/envs/cloudspace/lib/python3.10/site-packages/logomaker/../umap/umap_.py:1952: UserWarning: n_jobs value 1 overridden to 1 by setting random_state. Use no seed for parallelism.
warn(
=1,hue=df[SEQ_COL].str[8]=="Q") plot_2d(comb_emb,s
=1,hue=df[SEQ_COL].str[8]) plot_2d(comb_emb,s
=1,hue=df[SEQ_COL].str[7]) plot_2d(comb_emb,s
=1,hue=df[SEQ_COL].str[8]=="Q") plot_2d(onehot_pos_emb,s
No much difference with the physiochemical alone